According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathy...According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.展开更多
Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can grea...Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.展开更多
The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of ...The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of the Universe, driven by magnetic monopoles is proposed in this paper.展开更多
The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the...The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the performance of the system greatly. Compared with the classical PID control system, it has obvious advantages in the better dynamic response, the smaller quantity of calculation and the better robustness.展开更多
In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar mas...In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.展开更多
The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram,in which a cavity is formed.To study the growth characteristics of the cavity,the formation mechanism of the cavity is analyzed.Th...The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram,in which a cavity is formed.To study the growth characteristics of the cavity,the formation mechanism of the cavity is analyzed.The effect of Reynolds number and Mach number on drag coefficient is considered,the axial and radial growth models of the cavity are established respectively.The relative errors between the cavity length calculated by the axial growth model,the cavity diameter calculated by the radial growth model and Ma L.Y.test results are less than 20%,which verifies the effectiveness of the axial and radial growth models.Finally,numerical simulation is carried out to study the growth characteristics of the cavity caused by the projectile impacting the satellite tank at the velocity of 4000 m/s.The cavity length and diameter calculated by the axial and radial growth models agree well with those obtained by simulation results,indicating that the cavity length and diameter in satellite tank can be accurately calculated by the axial and radial growth models.展开更多
The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in co...The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes,especially the tide-surge interactions.We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges,wave-surge,and tide-surge interaction in the RSRs area,and applied a high-resolution integrally-coupled ADCIRC+SWAN model,in which the meteorological forcing inputs are simulated by the WRF-ARW model.The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast.Results show that the tide-surge interactions are of considerable regional heterogeneousness.The surge curves at Lüsi(in south RSRs)and Jianggang(in middle RSRs)have abrupt falls near the time of low tide,where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period.Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area.Differently,the interaction pattern in the Xiyang Trough(in north RSRs),showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters.Therefore,we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide,but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southem RSRs area.展开更多
In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model ar...In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model are isobutene dehydrogenation as main reaction, and hydrogenolysis, propane dehydrogenation as well as coke formation as side reactions that all occur on the catalyst surface. Then, the process condition has been optimized to produce more isobutene under steady state condition. To prove the accuracy of the considered mathematical model and assumptions, simulation results are compared with the plant data. As a powerful method in the global optimization, the genetic algorithm has been used to optimize the considered objective function. The isobutane conversion and isobutene selectivity under optimal conditions are about 40.1% and 91%, respectively.展开更多
A heat source model for radial friction welding was proposed, which was determined by friction pressure, friction coefficient, material properties and extrusion speed of material. A 3D model was established to analyze...A heat source model for radial friction welding was proposed, which was determined by friction pressure, friction coefficient, material properties and extrusion speed of material. A 3D model was established to analyze the continuous drive radial friction welding temperature field of 45 steel pipe. The influences of friction pressure, friction time and rotation speed on the temperature of the friction interface were analyzed. The results showed that the temperature on the friction interface rapidly rose to a peak temperature in initial friction stage and kept constant in the stable friction stage. Welding parameters of friction pressure, friction time and rotation speed had few influences on the peak temperature, while the increase of frlctlon pressure and rotation speed could shorten the time to reach the peak temperature.展开更多
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst...The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.展开更多
Watermarking is a technique for labeling digital pictures by hiding secret information into images. Watermark embedding is a method to discourage unauthorized copying and identify the owner or distributor of digital d...Watermarking is a technique for labeling digital pictures by hiding secret information into images. Watermark embedding is a method to discourage unauthorized copying and identify the owner or distributor of digital data. In this paper, a new method is proposed. The watermark is processed as a visually recognizable pattern-binary image, which includes more information than the traditional symbol or ID number and is "extracted" instead of only "detected" to characterize the owner. The watermark is hidden in the host image by selectively modifying the middle-frequency part of the host image in conjunction with the human visual system(HVS) and the image discrete cosine transform(DCT). The experimental results show that this method can survive image cropping and image compression, and get better results, this is also a prospective method.展开更多
Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to...Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam.展开更多
This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising fie...This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising field, and chaos theory has been applied to identify and predict its chaotic movement. A simulated traffic flow is generated using a car-following model( GM model), and the distance between two cars is investigated for its dynamic properties. A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model. A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos. The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent. The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series展开更多
Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consider...Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consideration. In fact, own?ing to errors from machining and assembly, thermal deformation and so forth, practically, axial clearance is inevitable in the joint. In this study, an error equivalent model(EEM) of revolute joints is proposed with considering both radial and axial clearances. Compared to the planar model of revolute joints only considering radial clearance, the journal motion inside the bearing is more abundant and matches the reality better in the EEM. The model is also extended for analyzing the error distribution of a spatial dual?axis("X–Y" type) antenna pointing mechanism of Spot?beam antennas which especially demand a high pointing accuracy. Three case studies are performed which illustrates the internal relation between radial clearance and axial clearance. It is found that when the axial clearance is big enough, the physical journal can freely realize both translational motion and rotational motion. While if the axial clearance is limited, the motion of the physical journal will be restricted. Analysis results indicate that the consideration of both radial and axial clearances in the revolute joint describes the journal motion inside the bearing more precise. To further validate the proposed model, a model of the EEM is designed and fabricated. Some suggestions on the design of revolute joints are also provided.展开更多
The relation between the HRM and the firm performance is analyzed statistically by many researchers in the literature. However, there are very few nonlinear approaches in literature for finding the relation between Hu...The relation between the HRM and the firm performance is analyzed statistically by many researchers in the literature. However, there are very few nonlinear approaches in literature for finding the relation between Human Resource Management (FIRM) and firm performance. This paper exposes the relationship between human resource management and organizational performance through the use of nonlinear modeling technique. The modeling is proposed based on Radial Basis Function (RBF) which is nonlinear modeling technique in literature. The relation between 12 input and 9 output parameters is investigated in this research that is collected between 54 companies in Turkey which indicated that the relationship between organizational management performance and relationship management can be modelled through nonlinearly.展开更多
A novel technique is proposed for the incremental construction of sparse radial basis function (RBF) networks. The correlation between an RBF regressor and the training data is used as the criterion to position and ...A novel technique is proposed for the incremental construction of sparse radial basis function (RBF) networks. The correlation between an RBF regressor and the training data is used as the criterion to position and shape the RBF node, and it is shown that this is equivalent to incrementally minimise the modelling mean square error. A guided random search optimisation method, called the repeated weighted boosting search, is adopted to append RBF nodes one by one in an incremental regression modelling procedure. The experimental results obtained using the proposed method demonstrate that it provides a viable alternative to the existing state-of-the-art modelling techniques for constructing parsimonious RBF models that generalise well.展开更多
The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calcu...The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calculating method of RWCB is proposed. The equilibrium profile is calculated by geometric model and variational approach,based on it,the predicted model of RWCB is developed for tire design. Finally,four different designs of 12R22.5 tires are investigated by experiment and finite element method,which is used to validate the accuracy of the theoretical method. Results indicate that experimental and finite element analysis results are found to be in good agreement with theoretical results; linear relationships are existed between the cord length and RWCB,and also existed between the position of belt and RWCB; tires designed by the methods have smaller and more uniform displacement,so the method can be used for tire optimized design.展开更多
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t...This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.展开更多
基金supported by the Ph.D. Programs Foundation of the Ministry of Education of China (Grant No.20070294026)
文摘According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.
基金supported by the National Natural Science Foundation of China(Grants 11472313,11232015,and 11572355)the Guangdong Province Research Fund for Applied Research
文摘Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.
文摘The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of the Universe, driven by magnetic monopoles is proposed in this paper.
基金The project supported by the National Science Foundation of China (No. 10175022) and the Tenth-Five-Year Nuclear Energy Development of the Commission of Science Technology and Industry for National Defense, and of the China National Nuclear Corporation
文摘The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the performance of the system greatly. Compared with the classical PID control system, it has obvious advantages in the better dynamic response, the smaller quantity of calculation and the better robustness.
文摘In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.
文摘The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram,in which a cavity is formed.To study the growth characteristics of the cavity,the formation mechanism of the cavity is analyzed.The effect of Reynolds number and Mach number on drag coefficient is considered,the axial and radial growth models of the cavity are established respectively.The relative errors between the cavity length calculated by the axial growth model,the cavity diameter calculated by the radial growth model and Ma L.Y.test results are less than 20%,which verifies the effectiveness of the axial and radial growth models.Finally,numerical simulation is carried out to study the growth characteristics of the cavity caused by the projectile impacting the satellite tank at the velocity of 4000 m/s.The cavity length and diameter calculated by the axial and radial growth models agree well with those obtained by simulation results,indicating that the cavity length and diameter in satellite tank can be accurately calculated by the axial and radial growth models.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC0407503)the Fundamental Research Fund for Central Public-interest Scientific Institution(No.Y218009)
文摘The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes,especially the tide-surge interactions.We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges,wave-surge,and tide-surge interaction in the RSRs area,and applied a high-resolution integrally-coupled ADCIRC+SWAN model,in which the meteorological forcing inputs are simulated by the WRF-ARW model.The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast.Results show that the tide-surge interactions are of considerable regional heterogeneousness.The surge curves at Lüsi(in south RSRs)and Jianggang(in middle RSRs)have abrupt falls near the time of low tide,where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period.Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area.Differently,the interaction pattern in the Xiyang Trough(in north RSRs),showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters.Therefore,we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide,but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southem RSRs area.
文摘In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model are isobutene dehydrogenation as main reaction, and hydrogenolysis, propane dehydrogenation as well as coke formation as side reactions that all occur on the catalyst surface. Then, the process condition has been optimized to produce more isobutene under steady state condition. To prove the accuracy of the considered mathematical model and assumptions, simulation results are compared with the plant data. As a powerful method in the global optimization, the genetic algorithm has been used to optimize the considered objective function. The isobutane conversion and isobutene selectivity under optimal conditions are about 40.1% and 91%, respectively.
基金This work was suooorted by National Natural Science Foundation of China (Grant No. 51075174/E050803 ).
文摘A heat source model for radial friction welding was proposed, which was determined by friction pressure, friction coefficient, material properties and extrusion speed of material. A 3D model was established to analyze the continuous drive radial friction welding temperature field of 45 steel pipe. The influences of friction pressure, friction time and rotation speed on the temperature of the friction interface were analyzed. The results showed that the temperature on the friction interface rapidly rose to a peak temperature in initial friction stage and kept constant in the stable friction stage. Welding parameters of friction pressure, friction time and rotation speed had few influences on the peak temperature, while the increase of frlctlon pressure and rotation speed could shorten the time to reach the peak temperature.
基金This project was supported in part by the Science Foundation of Shanxi Province (2003F028)China Postdoctoral Science Foundation (20060390318).
文摘The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.
基金Supported by the National Natural Science Foundation of China(No.69973018)
文摘Watermarking is a technique for labeling digital pictures by hiding secret information into images. Watermark embedding is a method to discourage unauthorized copying and identify the owner or distributor of digital data. In this paper, a new method is proposed. The watermark is processed as a visually recognizable pattern-binary image, which includes more information than the traditional symbol or ID number and is "extracted" instead of only "detected" to characterize the owner. The watermark is hidden in the host image by selectively modifying the middle-frequency part of the host image in conjunction with the human visual system(HVS) and the image discrete cosine transform(DCT). The experimental results show that this method can survive image cropping and image compression, and get better results, this is also a prospective method.
基金supported by the National Key Research and Development Program of China(Grants No.2016YFC0401600 and 2017YFC0404906)the National Natural Science Foundation of China(Grants No.51769033 and 51779035)the Fundamental Research Funds for the Central Universities(Grants No.DUT17ZD205 and DUT19LK14)
文摘Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam.
文摘This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising field, and chaos theory has been applied to identify and predict its chaotic movement. A simulated traffic flow is generated using a car-following model( GM model), and the distance between two cars is investigated for its dynamic properties. A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model. A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos. The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent. The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series
基金Supported by National Natural Science Foundation of China(Grant Nos.51635002(Key Program),51605011,51275015)
文摘Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consideration. In fact, own?ing to errors from machining and assembly, thermal deformation and so forth, practically, axial clearance is inevitable in the joint. In this study, an error equivalent model(EEM) of revolute joints is proposed with considering both radial and axial clearances. Compared to the planar model of revolute joints only considering radial clearance, the journal motion inside the bearing is more abundant and matches the reality better in the EEM. The model is also extended for analyzing the error distribution of a spatial dual?axis("X–Y" type) antenna pointing mechanism of Spot?beam antennas which especially demand a high pointing accuracy. Three case studies are performed which illustrates the internal relation between radial clearance and axial clearance. It is found that when the axial clearance is big enough, the physical journal can freely realize both translational motion and rotational motion. While if the axial clearance is limited, the motion of the physical journal will be restricted. Analysis results indicate that the consideration of both radial and axial clearances in the revolute joint describes the journal motion inside the bearing more precise. To further validate the proposed model, a model of the EEM is designed and fabricated. Some suggestions on the design of revolute joints are also provided.
文摘The relation between the HRM and the firm performance is analyzed statistically by many researchers in the literature. However, there are very few nonlinear approaches in literature for finding the relation between Human Resource Management (FIRM) and firm performance. This paper exposes the relationship between human resource management and organizational performance through the use of nonlinear modeling technique. The modeling is proposed based on Radial Basis Function (RBF) which is nonlinear modeling technique in literature. The relation between 12 input and 9 output parameters is investigated in this research that is collected between 54 companies in Turkey which indicated that the relationship between organizational management performance and relationship management can be modelled through nonlinearly.
文摘A novel technique is proposed for the incremental construction of sparse radial basis function (RBF) networks. The correlation between an RBF regressor and the training data is used as the criterion to position and shape the RBF node, and it is shown that this is equivalent to incrementally minimise the modelling mean square error. A guided random search optimisation method, called the repeated weighted boosting search, is adopted to append RBF nodes one by one in an incremental regression modelling procedure. The experimental results obtained using the proposed method demonstrate that it provides a viable alternative to the existing state-of-the-art modelling techniques for constructing parsimonious RBF models that generalise well.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272105)the Joint Construction Project of HIT and Weihai(Grant No.2013DXGJ02)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2015109)
文摘The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calculating method of RWCB is proposed. The equilibrium profile is calculated by geometric model and variational approach,based on it,the predicted model of RWCB is developed for tire design. Finally,four different designs of 12R22.5 tires are investigated by experiment and finite element method,which is used to validate the accuracy of the theoretical method. Results indicate that experimental and finite element analysis results are found to be in good agreement with theoretical results; linear relationships are existed between the cord length and RWCB,and also existed between the position of belt and RWCB; tires designed by the methods have smaller and more uniform displacement,so the method can be used for tire optimized design.
基金The National High Technology Research and Development Program of China (863 Program) (No.2003AA517020)
文摘This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.