In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model ar...In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model are isobutene dehydrogenation as main reaction, and hydrogenolysis, propane dehydrogenation as well as coke formation as side reactions that all occur on the catalyst surface. Then, the process condition has been optimized to produce more isobutene under steady state condition. To prove the accuracy of the considered mathematical model and assumptions, simulation results are compared with the plant data. As a powerful method in the global optimization, the genetic algorithm has been used to optimize the considered objective function. The isobutane conversion and isobutene selectivity under optimal conditions are about 40.1% and 91%, respectively.展开更多
Compared with the traditional radial flow reactors(RFRs), the double-ring RFRs possess advantages including lower pressure drop, shorter flow path and greater flow area. According to the Ergun's equation and the c...Compared with the traditional radial flow reactors(RFRs), the double-ring RFRs possess advantages including lower pressure drop, shorter flow path and greater flow area. According to the Ergun's equation and the continuity equation, a two-dimensional hydrodynamic model was established to describe the hydrodynamic behavior in the double-ring RFRs. The successive over-relaxation(SOR) method was applied to solve the two-dimensional hydrodynamic model. The flow assignment parameters(T_i) of mass flow in the inner channel to the outer catalyst bed and the inner catalyst bed were optimized by the Powell method. Simulations showed the trend of change in gas distribution uniformity along the axial direction and the weight hourly space velocity(WHSV) with the variation of reactor size. The model can be used to analyze the reasonability of dehydrogenation reactor design, and it can also provide quantitative reference for the design of new double-ring RFRs.展开更多
Reactor models were developed to describe the isomerization reaction process of C_(8) aromatics by applying a six-component sequential reaction network.Lab-scale experimental data were used in an axial bed reactor mod...Reactor models were developed to describe the isomerization reaction process of C_(8) aromatics by applying a six-component sequential reaction network.Lab-scale experimental data were used in an axial bed reactor model,and dynamic parameters were fitted by simulated annealing algorithm.In addition,industrial data and calculated dynamic parameters were used to determine the six-component concentration distributions using a radial reactor model.The influence of back-mixing on reaction performance was investigated.It was found that the model considering back-mixing was much closer to the real industrial reaction process.展开更多
文摘In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model are isobutene dehydrogenation as main reaction, and hydrogenolysis, propane dehydrogenation as well as coke formation as side reactions that all occur on the catalyst surface. Then, the process condition has been optimized to produce more isobutene under steady state condition. To prove the accuracy of the considered mathematical model and assumptions, simulation results are compared with the plant data. As a powerful method in the global optimization, the genetic algorithm has been used to optimize the considered objective function. The isobutane conversion and isobutene selectivity under optimal conditions are about 40.1% and 91%, respectively.
文摘Compared with the traditional radial flow reactors(RFRs), the double-ring RFRs possess advantages including lower pressure drop, shorter flow path and greater flow area. According to the Ergun's equation and the continuity equation, a two-dimensional hydrodynamic model was established to describe the hydrodynamic behavior in the double-ring RFRs. The successive over-relaxation(SOR) method was applied to solve the two-dimensional hydrodynamic model. The flow assignment parameters(T_i) of mass flow in the inner channel to the outer catalyst bed and the inner catalyst bed were optimized by the Powell method. Simulations showed the trend of change in gas distribution uniformity along the axial direction and the weight hourly space velocity(WHSV) with the variation of reactor size. The model can be used to analyze the reasonability of dehydrogenation reactor design, and it can also provide quantitative reference for the design of new double-ring RFRs.
文摘Reactor models were developed to describe the isomerization reaction process of C_(8) aromatics by applying a six-component sequential reaction network.Lab-scale experimental data were used in an axial bed reactor model,and dynamic parameters were fitted by simulated annealing algorithm.In addition,industrial data and calculated dynamic parameters were used to determine the six-component concentration distributions using a radial reactor model.The influence of back-mixing on reaction performance was investigated.It was found that the model considering back-mixing was much closer to the real industrial reaction process.