Radial variation in sap flux density (SFD) as a function of sapwood thickness is of importance in accurately estimating sap flux through sapwood area which, in turn, decides the precision of heat pulse application. Ho...Radial variation in sap flux density (SFD) as a function of sapwood thickness is of importance in accurately estimating sap flux through sapwood area which, in turn, decides the precision of heat pulse application. However, until now, only a few studies have evaluated the magnitude and significance of sampling errors associated with radial gradients in SFD, which were based on the small monitoring measurement data from a few trees. Based on one year of heat pulse observation of two 3 - 4 years old Eucalyptus urophylla S. T.,P Blake plantations in Leizhou Peninsula, Guangdong Province, China, a way of data processing was developed to treat with the lots of SFD data measured from 39 trees. It was found that the radial variation in SFD as a function of sapwood thickness in the two eucalyptus plantation sites could be expressed as y = 3. 667 5x(3) - 7.295 5x(2) + 3.682 6x + 0. 567 4 (R-2 = 0. 939 1, n = 80, P = 0.01), where y is the ratio of SFD of a sensor to the average of four data in different depths, x is the ratio of a sensor depth to tire radial sapwood thickness. It was the same (as in the following equation) in Jijia site, y = 5.006 2x(3) - 9.116 1x(2) + 4. 454 4x + 0.463 4 (R-2 = 0. 806 9, n = 72, P = 0.01) in Hetou site. From cambium to heartwood, SFD showed some increases at first and then decreases continuously. However, because die trees were very young, the maximum SFD was only 0. 33 - 0. 36 times more than the minimum.展开更多
Relationships between stem growth and climatic and edaphic factors,notably air temperatures and soil moisture for different slopes,are not completely understood.Stem radial variations were monitored at the bottom and ...Relationships between stem growth and climatic and edaphic factors,notably air temperatures and soil moisture for different slopes,are not completely understood.Stem radial variations were monitored at the bottom and top slope positions in a Larix principis-rupprechtii plantation during the 2017 and 2018 growing seasons.Total precipitation during the growing season in 2017 and 2018 was 566 mm and 728 mm,respectively.Stem contractions typically occurred after mid-morning followed by swelling in the late afternoon in both plots,reflecting the diurnal cycle of water uptake and loss.Trees at the two locations showed the same growth initiation(mid-May)because of the small differences in air and soil temperatures.There were no significant differences in cumulative stem radial growth between the bottom plot(1.57±0.34 mm)and the top plot(1.55±0.26 mm)in 2018.However,in 2017,the main growth period of the bottom plot ceased 17 days earlier than in the top plot,while cumulative seasonal growth of the bottom plot(1.08±0.25 mm)was significantly less than the top plot(1.54±0.43 mm).Maximum daily stem shrinkage was positively correlated with air and soil temperatures,solar radiation,vapor pressure deficits,and negatively correlated with volumetric soil moisture content.The maximum daily shrinkage reflected transpiration rates as affected by environmental factors.Daily radial stem increment was correlated with precipitation and volumetric soil moisture in both years,but with air temperatures only in 2017.The seasonal growth of L.principis-rupprechtii Mayr thus shows interannual dynamics,while precipitation constitutes a key driving factor.展开更多
The fast growth of Tetracentron sinense is a potential valuable timber resource, but whether its anatomy and chemical components are suitable for timber is unknown. We used light microscopy and SEM to examine the anat...The fast growth of Tetracentron sinense is a potential valuable timber resource, but whether its anatomy and chemical components are suitable for timber is unknown. We used light microscopy and SEM to examine the anatomical structure and FITR to measure the chemical components of the phloem and xylem of this tree. Radial variations in growth ring width and tracheid dimensions were also evaluated. The sieve tube, phloem parenchyma cell and sclereids clusters were the main cells in phloem, and the tracheid was the fundamental cell in xylem. An unusual tracheid type, fiber-tracheids or vessel-liked elements was visible. Wood rays nonstoried, uniseriate and multiseriate, including heterogeneous II, occasionally I, and usually 3-6 cells wide. The mean growth-ring width was 2.53 +/- 0.46 mm, and the percentage of late wood was over 60%. For radial variation, growth-ring width increased at an early growth stage, and reached the largest increment during years 11-15, then decreased. The maximum growth-ring width was 5.313 mm. During late growth (60-85 years), trees also maintained a high radial growth increment. Radial variation in the percentage of late wood was uniform, about 50-70%, throughout the growth years. Growth patterns in the length and width of early and late wood were similar as the trees aged. From the FTIR results, the chemical components differed significantly between xylem and phloem, hemicellulose in particular was higher in the xylem than in the phloem, where it was apparently absent. All of these suggest that the composition of phloem in T. sinense is very similar to that of hardwood, and it has higher growth ratio and uniform wood properties.展开更多
Free vibration analysis of composite laminates with delaminations is performed based on a three-dimensional semi-analytical model established by introducing the local radial point interpolation method(LRPIM) into a ...Free vibration analysis of composite laminates with delaminations is performed based on a three-dimensional semi-analytical model established by introducing the local radial point interpolation method(LRPIM) into a Hamilton system. The governing equation is derived with a transfer matrix technique and a spring layer model based on a local weak-form equivalent to the modified Hellinger-Reissner variational principle. Main superiority of the present model is that the scale of the governing equation involves only the so-called state variables at the top and bottom surfaces, and is insensitive to the thickness and the layer number of the composite laminates. Several numerical examples for analyzing the vibration frequencies and mode shapes of delaminated composite beams and plates are given to validate the model. The results are in good agreement with the pre-existing results.展开更多
文摘Radial variation in sap flux density (SFD) as a function of sapwood thickness is of importance in accurately estimating sap flux through sapwood area which, in turn, decides the precision of heat pulse application. However, until now, only a few studies have evaluated the magnitude and significance of sampling errors associated with radial gradients in SFD, which were based on the small monitoring measurement data from a few trees. Based on one year of heat pulse observation of two 3 - 4 years old Eucalyptus urophylla S. T.,P Blake plantations in Leizhou Peninsula, Guangdong Province, China, a way of data processing was developed to treat with the lots of SFD data measured from 39 trees. It was found that the radial variation in SFD as a function of sapwood thickness in the two eucalyptus plantation sites could be expressed as y = 3. 667 5x(3) - 7.295 5x(2) + 3.682 6x + 0. 567 4 (R-2 = 0. 939 1, n = 80, P = 0.01), where y is the ratio of SFD of a sensor to the average of four data in different depths, x is the ratio of a sensor depth to tire radial sapwood thickness. It was the same (as in the following equation) in Jijia site, y = 5.006 2x(3) - 9.116 1x(2) + 4. 454 4x + 0.463 4 (R-2 = 0. 806 9, n = 72, P = 0.01) in Hetou site. From cambium to heartwood, SFD showed some increases at first and then decreases continuously. However, because die trees were very young, the maximum SFD was only 0. 33 - 0. 36 times more than the minimum.
基金supported by the Ningxia Hui Autonomous Region(QCYL-2018-12)the National Key Research and Development Program of China(2016YFC0501603,2017YFC0504602)the National Natural Science Foundation of China(41671025).
文摘Relationships between stem growth and climatic and edaphic factors,notably air temperatures and soil moisture for different slopes,are not completely understood.Stem radial variations were monitored at the bottom and top slope positions in a Larix principis-rupprechtii plantation during the 2017 and 2018 growing seasons.Total precipitation during the growing season in 2017 and 2018 was 566 mm and 728 mm,respectively.Stem contractions typically occurred after mid-morning followed by swelling in the late afternoon in both plots,reflecting the diurnal cycle of water uptake and loss.Trees at the two locations showed the same growth initiation(mid-May)because of the small differences in air and soil temperatures.There were no significant differences in cumulative stem radial growth between the bottom plot(1.57±0.34 mm)and the top plot(1.55±0.26 mm)in 2018.However,in 2017,the main growth period of the bottom plot ceased 17 days earlier than in the top plot,while cumulative seasonal growth of the bottom plot(1.08±0.25 mm)was significantly less than the top plot(1.54±0.43 mm).Maximum daily stem shrinkage was positively correlated with air and soil temperatures,solar radiation,vapor pressure deficits,and negatively correlated with volumetric soil moisture content.The maximum daily shrinkage reflected transpiration rates as affected by environmental factors.Daily radial stem increment was correlated with precipitation and volumetric soil moisture in both years,but with air temperatures only in 2017.The seasonal growth of L.principis-rupprechtii Mayr thus shows interannual dynamics,while precipitation constitutes a key driving factor.
基金financially supported by the Youth Science and Technology Innovation Fund of NJFU(CXL2015018)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The fast growth of Tetracentron sinense is a potential valuable timber resource, but whether its anatomy and chemical components are suitable for timber is unknown. We used light microscopy and SEM to examine the anatomical structure and FITR to measure the chemical components of the phloem and xylem of this tree. Radial variations in growth ring width and tracheid dimensions were also evaluated. The sieve tube, phloem parenchyma cell and sclereids clusters were the main cells in phloem, and the tracheid was the fundamental cell in xylem. An unusual tracheid type, fiber-tracheids or vessel-liked elements was visible. Wood rays nonstoried, uniseriate and multiseriate, including heterogeneous II, occasionally I, and usually 3-6 cells wide. The mean growth-ring width was 2.53 +/- 0.46 mm, and the percentage of late wood was over 60%. For radial variation, growth-ring width increased at an early growth stage, and reached the largest increment during years 11-15, then decreased. The maximum growth-ring width was 5.313 mm. During late growth (60-85 years), trees also maintained a high radial growth increment. Radial variation in the percentage of late wood was uniform, about 50-70%, throughout the growth years. Growth patterns in the length and width of early and late wood were similar as the trees aged. From the FTIR results, the chemical components differed significantly between xylem and phloem, hemicellulose in particular was higher in the xylem than in the phloem, where it was apparently absent. All of these suggest that the composition of phloem in T. sinense is very similar to that of hardwood, and it has higher growth ratio and uniform wood properties.
文摘Free vibration analysis of composite laminates with delaminations is performed based on a three-dimensional semi-analytical model established by introducing the local radial point interpolation method(LRPIM) into a Hamilton system. The governing equation is derived with a transfer matrix technique and a spring layer model based on a local weak-form equivalent to the modified Hellinger-Reissner variational principle. Main superiority of the present model is that the scale of the governing equation involves only the so-called state variables at the top and bottom surfaces, and is insensitive to the thickness and the layer number of the composite laminates. Several numerical examples for analyzing the vibration frequencies and mode shapes of delaminated composite beams and plates are given to validate the model. The results are in good agreement with the pre-existing results.