Mode matching is a useful method to analyze the mode characteristics during the section change of a waveguide. By applying this method to the radial waveguide, and solving specific problems due to the radial transmiss...Mode matching is a useful method to analyze the mode characteristics during the section change of a waveguide. By applying this method to the radial waveguide, and solving specific problems due to the radial transmission of electromagnetic wave, this presents a calculating method in radial waveguide based on mode matching. The scattering characteristics of metallic plates in the radial waveguide are calculated, and verified qualitatively using an electromagnetic simulator, which confirmed the validity of this method.展开更多
In this paper, a novel four-way radial waveguide power divider with low insertion loss and high power-handling capacity is proposed. This power divider consists of an input coaxial waveguide, a eentral probe, a radial...In this paper, a novel four-way radial waveguide power divider with low insertion loss and high power-handling capacity is proposed. This power divider consists of an input coaxial waveguide, a eentral probe, a radial waveguide, four equispaced identical coupling probes, four equispaced identical adjusting posts and four output coaxial waveguides. The novel coupling probes and the adjusting posts are used to realize favorable uniform power division. A power divider with the center frequency of 4.1 GHz is designed, fabricated and measured. Good agreement between simulation and experiment is noted. The measured 15 dB return-loss bandwidth of the power divider is about 600 MHz. The measured 0.5 dB insertion loss bandwidth is wider than 700 MHz. The differences and isolations between the output ports are also discussed. The power-handling capacity of the power divider is analyzed through simulation, and the result proves its usability in high power applications.展开更多
基金The Fundamental Research Funds for Central Universities (No.SWJTU09ZT38)
文摘Mode matching is a useful method to analyze the mode characteristics during the section change of a waveguide. By applying this method to the radial waveguide, and solving specific problems due to the radial transmission of electromagnetic wave, this presents a calculating method in radial waveguide based on mode matching. The scattering characteristics of metallic plates in the radial waveguide are calculated, and verified qualitatively using an electromagnetic simulator, which confirmed the validity of this method.
基金supported by the Fundamental Research Funds for the Central Universities (SWJTU09ZT38, SWJTU09BR241)
文摘In this paper, a novel four-way radial waveguide power divider with low insertion loss and high power-handling capacity is proposed. This power divider consists of an input coaxial waveguide, a eentral probe, a radial waveguide, four equispaced identical coupling probes, four equispaced identical adjusting posts and four output coaxial waveguides. The novel coupling probes and the adjusting posts are used to realize favorable uniform power division. A power divider with the center frequency of 4.1 GHz is designed, fabricated and measured. Good agreement between simulation and experiment is noted. The measured 15 dB return-loss bandwidth of the power divider is about 600 MHz. The measured 0.5 dB insertion loss bandwidth is wider than 700 MHz. The differences and isolations between the output ports are also discussed. The power-handling capacity of the power divider is analyzed through simulation, and the result proves its usability in high power applications.