Finite element model is constructed according to the principle and characteristics of radial-axial large ring rolling technology. Dynamic explicit finite element method is used to simulate the rolling process. An effe...Finite element model is constructed according to the principle and characteristics of radial-axial large ring rolling technology. Dynamic explicit finite element method is used to simulate the rolling process. An effective modeling method of guide roller is proposed. Simulation indicates that high quality ring product could be obtained when rational rotational speed of rollers and feed rate in the radial and axial rolling are assigned.展开更多
Eucalyptus is a major fast-grown species in South China,which has the potential for producing structural wood products such as cross-laminated timber(CLT).Aspect ratio(board width vs.board thickness)of eucalyptus lumb...Eucalyptus is a major fast-grown species in South China,which has the potential for producing structural wood products such as cross-laminated timber(CLT).Aspect ratio(board width vs.board thickness)of eucalyptus lumbers is small due to the small diameter of fast-grown eucalyptus wood.To evaluate its rolling shear modulus and strength for potential CLT applications,three-layer hybrid CLT shear block specimens with different aspect ratios(2,4,6),were tested by planar shear test method.Digital image correlation(DIC)was employed to measure the rolling shear strain distribution and development during the planar shear tests.The mean values of rolling shear modulus and strength of eucalyptus lamination were 260.3%and 88.2%higher than those of SPF(Spruce-pine-fir)lamination with the same aspect ratio of 4,respectively.The rolling shear properties of eucalyptus laminations increased as the aspect ratio increased.Aspect ratio had a significant influence on rolling shear modulus compared to rolling shear strength.The high shear strain regions were primarily found around the gaps between segments of cross layer.The quantity of high shear strain regions increased as the aspect ratio of lamination decreased.Other high shear strain regions also occurred around the pith and along the glue line.The sudden failure of specimen occurred in the high strain region.In conclusion,the rolling shear strength and modulus of fast-grown eucalyptus laminations exceed the respective characteristic values for softwoods in the current standard by roughly factors of 3 and 8,indicating great potential for fast-grown eucalyptus wood cross-layers in CLT.展开更多
By using multi-grid method, the simultaneous Reynolds, elasticily, film-thickness,rheology, energy and thermal interface temperature equations are solved, and the numerical solution of line-ontact thermal EHL is succe...By using multi-grid method, the simultaneous Reynolds, elasticily, film-thickness,rheology, energy and thermal interface temperature equations are solved, and the numerical solution of line-ontact thermal EHL is successfully obtained and presented in this paper.In addition, the influence of sliding/rolling ratio on the distribution of temperature within the film and on the solid surface. minimum film thickness and traction coefficient are also studied. The results show that the influence of temperature on film thickness is significant and unnegligible, All mentioned above may provide a basis for further investigation of thermal EHL of helical gears.展开更多
The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of veloc...The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of velocity ratio, offset distance between two rolls and pass reduction on the distribution of equivalent strain and shear strain were analyzed. The results show that flow velocity and equivalent strain on the lower layer of the plate are larger than those of the upper layer because of the larger velocity of the lower roll and the gap is increased with the increase of velocity ratio and pass reduction. The shear strain of roiling direction in the center point is almost zero during symmetrical rolling, while it is much larger during snake rolling because of the existence of rub zone. The shear strain is increased with the increase of velocity ratio, offset distance and pass reduction. This additional shear strain is beneficial to improve the in_homogeneous strain distribution.展开更多
The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF t...The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.展开更多
The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condi...The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.展开更多
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b...The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.展开更多
In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio ...In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The "positive" and "negative" cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.展开更多
A dynamic mechanical model is proposed to describe the complexing actions of all the rolls on the ring during the ultra-large radial-axial ring rolling(RARR)process with four guide rolls.Based on the model,the calcula...A dynamic mechanical model is proposed to describe the complexing actions of all the rolls on the ring during the ultra-large radial-axial ring rolling(RARR)process with four guide rolls.Based on the model,the calculation models for bending moment and normal stress at any section of the ring are deduced by force method.If the maximum section bending normal stress exceeds the yield stress of the ring materials,the ring will be distorted thus leading to the instability of the RARR process.According to this,a plastic instability criterion for the ultra-large RARR process with four guide rolls is developed,based on which a mathematical model to calculate the critical guide force for avoiding plastic instability of ring is obtained.The influence rule of the position of guide roll on the dangerous ring section of plastic instability is revealed,from which it is found the dangerous ring section mainly appears at the radial and axial deformation regions and the contact positions of the guide rolls and ring.The optimized layout of guide roll around the ring in favor of stability is determined to be about a1=61°and a2=119°.The plastic instability criterion is proven to be reliable from the aspects of the critical guide force,the section bending moment and normal stress and the dangerous ring section of plastic instability.Intelligent simulation case studies for the RARR process of ultra-large aluminum alloy ring indicate that the stable forming of the process can be effectively realized by regulating the guide force based on the plastic instability criterion.This work could provide a valuable guidance for the control of guide rolls and the optimization of the ultra-large RARR process with four guide rolls.展开更多
A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER...A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER) exceeding 980 MPa, 10%,and 30%,respectively.The 90° V-type bending perpendicular to the rolling direction can satisfy the R/t=1.0 requirement, indicating excellent bendability.Systematic evaluations of industrial trial-produced 980 MPa hot-rolled AHSS have been conducted, including microstructure, tensile properties in three directions, HER,bendability, fatigue limit strength, and forming limit.The microstructure of the newly developed 980 MPa AHSS primarily consists of fine bainite and a small amount of martensite-austenite constituent.The practical yield and tensile strength are higher than 800 and 980 MPa, respectively, with typical elongation of 13% and HER of around 40%.The good combination of the newly developed 980 MPa AHSS is primarily attributed to the fine bainitic microstructure, resulting in excellent flangeability and bendability.In addition, the newly developed 980 MPa AHSS has good fatigue and forming properties, making it suitable for the production of chassis and suspension components.展开更多
Based on the ABAQUS explicit dynamic simulation platform,the finite element model of single stand mill with restrained mandrel was adopted to research the influence of mandrel - roller velocity ratio (MRVR),mandrel fr...Based on the ABAQUS explicit dynamic simulation platform,the finite element model of single stand mill with restrained mandrel was adopted to research the influence of mandrel - roller velocity ratio (MRVR),mandrel friction and tension between stands on rolling force.The analysis results show that when the MRVR is lower than 1,the rolling force increases obviously with the increase of MRVR and reaches the peak value when the MRVR is about 1.The rolling force increase induced by the MRVR increase is the main reason of the formation of the bulge defect on the tube head and tail at the entering and exiting stage during tube continuous rolling process by full floating mandrel mill,which can be intensified by the increase of mandrel friction coefficient.The rolling force decreases with the increase of tension.As the tension is larger, the rolling force decrease amplitude is larger.The influence of backward tension on rolling force is greater than that of forward tension distinctly.Tension control can be used to decrease the rolling force increase induced by the MRVR increase,which is imposing tension at the same time when the MRVR increases,in order to improve even eliminate the bulge defect,and enhance the tube dimension precision.展开更多
基金Supported by National Natural Science Foundation fro Key Program of China (50335060)
文摘Finite element model is constructed according to the principle and characteristics of radial-axial large ring rolling technology. Dynamic explicit finite element method is used to simulate the rolling process. An effective modeling method of guide roller is proposed. Simulation indicates that high quality ring product could be obtained when rational rotational speed of rollers and feed rate in the radial and axial rolling are assigned.
基金the National Natural Science Foundation of China(Grant No.31570559 and No.51808293)Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180778).
文摘Eucalyptus is a major fast-grown species in South China,which has the potential for producing structural wood products such as cross-laminated timber(CLT).Aspect ratio(board width vs.board thickness)of eucalyptus lumbers is small due to the small diameter of fast-grown eucalyptus wood.To evaluate its rolling shear modulus and strength for potential CLT applications,three-layer hybrid CLT shear block specimens with different aspect ratios(2,4,6),were tested by planar shear test method.Digital image correlation(DIC)was employed to measure the rolling shear strain distribution and development during the planar shear tests.The mean values of rolling shear modulus and strength of eucalyptus lamination were 260.3%and 88.2%higher than those of SPF(Spruce-pine-fir)lamination with the same aspect ratio of 4,respectively.The rolling shear properties of eucalyptus laminations increased as the aspect ratio increased.Aspect ratio had a significant influence on rolling shear modulus compared to rolling shear strength.The high shear strain regions were primarily found around the gaps between segments of cross layer.The quantity of high shear strain regions increased as the aspect ratio of lamination decreased.Other high shear strain regions also occurred around the pith and along the glue line.The sudden failure of specimen occurred in the high strain region.In conclusion,the rolling shear strength and modulus of fast-grown eucalyptus laminations exceed the respective characteristic values for softwoods in the current standard by roughly factors of 3 and 8,indicating great potential for fast-grown eucalyptus wood cross-layers in CLT.
文摘By using multi-grid method, the simultaneous Reynolds, elasticily, film-thickness,rheology, energy and thermal interface temperature equations are solved, and the numerical solution of line-ontact thermal EHL is successfully obtained and presented in this paper.In addition, the influence of sliding/rolling ratio on the distribution of temperature within the film and on the solid surface. minimum film thickness and traction coefficient are also studied. The results show that the influence of temperature on film thickness is significant and unnegligible, All mentioned above may provide a basis for further investigation of thermal EHL of helical gears.
基金Projects(2012CB619505,2010CB731703)supported by the National Basic Research Program of ChinaProject(CX2013B065)supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(117308)supported by Postdoctoral Science Foundation of Central South University,China
文摘The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of velocity ratio, offset distance between two rolls and pass reduction on the distribution of equivalent strain and shear strain were analyzed. The results show that flow velocity and equivalent strain on the lower layer of the plate are larger than those of the upper layer because of the larger velocity of the lower roll and the gap is increased with the increase of velocity ratio and pass reduction. The shear strain of roiling direction in the center point is almost zero during symmetrical rolling, while it is much larger during snake rolling because of the existence of rub zone. The shear strain is increased with the increase of velocity ratio, offset distance and pass reduction. This additional shear strain is beneficial to improve the in_homogeneous strain distribution.
基金Supported by Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.51125023)National Basic Research Program of China(973program,Grant No.2011CB013405)+1 种基金National Natural Science Foundation of China(Grant Nos.5127552651275105)Fundamental Research Funds for the Central Universities(Grant Nos.HEUCF20130910003,201403017)
文摘The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175007,51075023)
文摘The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.
基金Project(51275030)supported by the National Natural Science Foundation of ChinaProject(2016JBM051)supported by the Fundamental Research Funds for the Central Universities,China
文摘The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.
基金Project(51405520)supported by the National Natural Science Foundation of ChinaProject(2012CB619505)supported by National Basic Research Program of China
文摘In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The "positive" and "negative" cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.
基金supported by the National Natural Science Foundation of China (No. 51875468, 51575448)the Research & Development Institute of Northwestern Polytechnical University in Shenzhen (JCYJ20170815162709770)
文摘A dynamic mechanical model is proposed to describe the complexing actions of all the rolls on the ring during the ultra-large radial-axial ring rolling(RARR)process with four guide rolls.Based on the model,the calculation models for bending moment and normal stress at any section of the ring are deduced by force method.If the maximum section bending normal stress exceeds the yield stress of the ring materials,the ring will be distorted thus leading to the instability of the RARR process.According to this,a plastic instability criterion for the ultra-large RARR process with four guide rolls is developed,based on which a mathematical model to calculate the critical guide force for avoiding plastic instability of ring is obtained.The influence rule of the position of guide roll on the dangerous ring section of plastic instability is revealed,from which it is found the dangerous ring section mainly appears at the radial and axial deformation regions and the contact positions of the guide rolls and ring.The optimized layout of guide roll around the ring in favor of stability is determined to be about a1=61°and a2=119°.The plastic instability criterion is proven to be reliable from the aspects of the critical guide force,the section bending moment and normal stress and the dangerous ring section of plastic instability.Intelligent simulation case studies for the RARR process of ultra-large aluminum alloy ring indicate that the stable forming of the process can be effectively realized by regulating the guide force based on the plastic instability criterion.This work could provide a valuable guidance for the control of guide rolls and the optimization of the ultra-large RARR process with four guide rolls.
文摘A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER) exceeding 980 MPa, 10%,and 30%,respectively.The 90° V-type bending perpendicular to the rolling direction can satisfy the R/t=1.0 requirement, indicating excellent bendability.Systematic evaluations of industrial trial-produced 980 MPa hot-rolled AHSS have been conducted, including microstructure, tensile properties in three directions, HER,bendability, fatigue limit strength, and forming limit.The microstructure of the newly developed 980 MPa AHSS primarily consists of fine bainite and a small amount of martensite-austenite constituent.The practical yield and tensile strength are higher than 800 and 980 MPa, respectively, with typical elongation of 13% and HER of around 40%.The good combination of the newly developed 980 MPa AHSS is primarily attributed to the fine bainitic microstructure, resulting in excellent flangeability and bendability.In addition, the newly developed 980 MPa AHSS has good fatigue and forming properties, making it suitable for the production of chassis and suspension components.
文摘Based on the ABAQUS explicit dynamic simulation platform,the finite element model of single stand mill with restrained mandrel was adopted to research the influence of mandrel - roller velocity ratio (MRVR),mandrel friction and tension between stands on rolling force.The analysis results show that when the MRVR is lower than 1,the rolling force increases obviously with the increase of MRVR and reaches the peak value when the MRVR is about 1.The rolling force increase induced by the MRVR increase is the main reason of the formation of the bulge defect on the tube head and tail at the entering and exiting stage during tube continuous rolling process by full floating mandrel mill,which can be intensified by the increase of mandrel friction coefficient.The rolling force decreases with the increase of tension.As the tension is larger, the rolling force decrease amplitude is larger.The influence of backward tension on rolling force is greater than that of forward tension distinctly.Tension control can be used to decrease the rolling force increase induced by the MRVR increase,which is imposing tension at the same time when the MRVR increases,in order to improve even eliminate the bulge defect,and enhance the tube dimension precision.