For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo...For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.展开更多
A concise formula for computing radiation heat flow of in-cylinder soot is presented, based on the assumptions that in-cylinder heat transfer of diesel engines is a quasi-equilibrium process and in-cylinder soot parti...A concise formula for computing radiation heat flow of in-cylinder soot is presented, based on the assumptions that in-cylinder heat transfer of diesel engines is a quasi-equilibrium process and in-cylinder soot particles are spherical. That in this formula there consist neither constants needing adjustments nor variables related to engine types or operating conditions makes it universal and easy to use. Also it can be seen from the formula that radiation heat transfer is proportional to the quotient of in-cylinder soot mass over the average radius of primary particles. Besides, with the help of different algorithms it can be used for predicting cylinders' global as well as local radiation heat flows. As a demonstrative application on its global facet, a three-dimension simulation study about the soot-radiation-related heat flow in the combustion chamber of a diesel engine is carried out. Results show that the range of the soot-radiation-related heat flow computed by this formula agrees well with other researcher's earlier theoretic reasoning and experimental measurements.展开更多
Building is an important scenario for achieving global carbon peak and carbon neutrality goals,accounting for approximately 37%of global energy-related CO_(2) emissions in 2020.In the meanwhile,the construction and op...Building is an important scenario for achieving global carbon peak and carbon neutrality goals,accounting for approximately 37%of global energy-related CO_(2) emissions in 2020.In the meanwhile,the construction and operation of buildings was responsible for 36%of global energy consumption,of which 30%energy was used for space heating.Therefore,this paper proposes a low-carbon building heating system that is coupled to a new semiconductor radiation heating unit and distributed rooftop photovoltaic to reduce carbon emissions.To reveal its building heating characteristics,a dynamic model of heat transfer based on semiconductor low-temperature radiant heating is first established by analyzing the heat conduction,convection,and radiation models,and the uncertainty from both the distributed rooftop photovoltaic and building heating demand is considered in the building heating operation strategy.Then,a simulation model of a low-carbon building heating system is built in MATLAB/SIMULINK for two different climate zones in China(Beijing and Wuhan).When building and using the low-carbon building heating system stable for 30 years,the payback period is 5.2–8.2 years in Beijing and 6.4–11.6 years in Wuhan.Compared with the traditional grid-powered heating system,the simulation revealed that the carbon emissions of Beijing and Wuhan during the heating season are reduced by 44.9%and 44.3%,respectively,and the corresponding building heating cost is saved by 62.1%and 57.8%.展开更多
In the past 30 years,the effect of thermal radiation and convection heat transfer,which are predominant at high temperature and can affect the measurement accuracy of thermocouple,were not fully considered in the fiel...In the past 30 years,the effect of thermal radiation and convection heat transfer,which are predominant at high temperature and can affect the measurement accuracy of thermocouple,were not fully considered in the field of laminar flame researches.In this work,the effect of thermal radiation heat transfer was newly calculated by determining the spectral irradiation heat flux from the whole space to thermocouple and the radiation heat loss from thermocouple junction to surroundings.Analysis reveals that the thermocouple itself maintains at high temperature,resulting serious thermal radiation heat loss,which can be compensated via receiving energy from convection-transferred heat as well as thermal radiation emitted by flame and burner surface.Such method was applied to correct the temperatures measured by thermocouple in rich nitromethane flame as reference.The results indicate that the radiation heat loss plays a dominant role,while the radiations emitted by flame and burner surface account for minor contribution with the percentage of 20.78%at the height above burner(HAB)of 0.4 mm,3.63%at HAB of 2.0 mm and even smaller at higher HAB.Temperature correction states that the maximum temperature error is 117.60 K,where the effect of thermal radiation emitted by flame and burner surface is less than 1.75 K.Consequently,it is provably reasonable and feasible to concentrate on the radiation heat loss and ignore the effect of thermal radiation emitted by flame and burner in real combustion processes.展开更多
A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo meth...A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method".展开更多
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa...Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.展开更多
An inverse method is presented for estimating the unknown boundary incident radiation heat flux onone side of one-dimensional semitransparent planar slab with semitransparent boundaries from theknowledge of the radiat...An inverse method is presented for estimating the unknown boundary incident radiation heat flux onone side of one-dimensional semitransparent planar slab with semitransparent boundaries from theknowledge of the radiation intensities exiting from the other side. The inverse problem is solved usingconjugate gradient method of minimization based on discrete ordinates method (DOM) of radiativetransfer equation. The equations of sensitivity coefficients are derived and easily solved by DOM, withthe result that the complicated numerical differentiation commonly used in solving sensitivity coefficients is avoided. The effects of anisotropic scattering, absorption coefficient, scattering coefficient,boundary reflectivity, fluid temperature outside the boundaries, convection heat transfer coefficients,conduction coefficient of semitransparent media and slab thickness on the accuracy of the inverse analysis are investigated. The results show that the boundary incident radiation heat flux can be estimatedaccurately, even with noisy data.展开更多
Under the back-side windy condition,the convection and radiation heat transfer characteristics in an iso-flux upward-facing cylindrical cavity were studied by three-dimensional numerical simulation.The impacts of cavi...Under the back-side windy condition,the convection and radiation heat transfer characteristics in an iso-flux upward-facing cylindrical cavity were studied by three-dimensional numerical simulation.The impacts of cavity tilt angle,wind incident angle and wind speed on convection and radiation heat transfer Nusselt number Nuc and Nur were analyzed,and the possible explanations for their impacts were presented.Results show that due to the disturbance of wind,the influence of cavity tilt angle becomes more complicated and is related to wind incident angle and wind speed.The variation of Nuc or Nur with wind incident angle is different for different cavity tilt angles.Despite of the changes of cavity tilt angle or wind incident angle,the Nuc increases with the wind speed while the Nur presents a declination with the increasing of wind speed.Hence,compared with cavity tilt angle and wind incident angle,wind speed may be the dominant factor affecting or controlling the convective and radiation heat transfer of cavity.展开更多
Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reve...Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.展开更多
The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas vo...The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies.展开更多
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a re...The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.展开更多
This paper introduces a new model for the Fourier law of heat conduction with the time-fractional order to the generalized Maxwell fluid. The flow is influenced by magnetic field, radiation heat, and heat source. A fr...This paper introduces a new model for the Fourier law of heat conduction with the time-fractional order to the generalized Maxwell fluid. The flow is influenced by magnetic field, radiation heat, and heat source. A fractional calculus approach is used to establish the constitutive relationship coupling model of a viscoelastic fluid. We use the Laplace transform and solve ordinary differential equations with a matrix form to obtain the velocity and temperature in the Laplace domain. To obtain solutions from the Laplace space back to the original space, the numerical inversion of the Laplace transform is used. According to the results and graphs, a new theory can be constructed. Comparisons of the associated parameters and the corresponding flow and heat transfer characteristics are presented and analyzed in detail.展开更多
This is the first report of using the microwave heating technique to synthesize calcium sulphide activated by europium whose structure is determined as the face-centered cubic by conventional X-ray powder diffraction ...This is the first report of using the microwave heating technique to synthesize calcium sulphide activated by europium whose structure is determined as the face-centered cubic by conventional X-ray powder diffraction method. The phosphor has maximum excitation peaks located at 280 urn and 560 urn and the maximum emission of the phosphor is 630 nm. When the concentration of Eu^(2+) in CaS increases from I .0 × 10^(-5) to l.0 × 10^(-2) mole per mole host, the body colour of the calcium sulphide activated with europium changes from white, through light-red to pink to deep-red. The phosphor obtains the longest afterglow at the concentration of 0.1% Eu^(2+)doped and is a kind of good material excited by sunlight.展开更多
Satellite-derived data of the outgoing longwave radiation (OLR), net shortwave radiation at thetropopause (SRT) and circulation information as predicted by NCEP are used in the work to study seasonal variations of net...Satellite-derived data of the outgoing longwave radiation (OLR), net shortwave radiation at thetropopause (SRT) and circulation information as predicted by NCEP are used in the work to study seasonal variations of net radiative heating in the earth-atmospheric system and its relationship with the Asian summer monsoon. As is shown in the result, the zonal deviations of the zonal deviations of the heating, manifested as mutations in direction between land and sea with seasons, is an indication of the thermal difference between them.Being a month earlier than that in the general circulation from spring to summer, the seasonal reversal of directionmay be playing an essential role in triggering the onset and withdrawal of summer monsoon in Asia.展开更多
An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. Th...An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.展开更多
Satellite's thermal control subsystem (TCS) has to maintain components and structure within their specified temperature limits during satellite service life. TCS designers have to face the challenge of reducing bot...Satellite's thermal control subsystem (TCS) has to maintain components and structure within their specified temperature limits during satellite service life. TCS designers have to face the challenge of reducing both the weight of the system and required heater power while keeping components temperature within their design range. For a space based heat pipe radiator system, several researchers have published different approaches to reach such goal. This paper presents a thermal design and optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a prospective communication satellite payload panel with applied passive thermal control techniques was considered. The thermal passive techniques used in this design mainly include multilayer insulation (MLI) blankets, optical solar reflectors (OSR), selected thermal coatings, interface fillers and constant conductance heat pipes. The heat pipe network is comprised of some heat pipes embedded in the panel and some mounted on inner surface of the panel. Embedded heat pipes are placed under high heat dissipation equipments and their size is fixed; minimum weight of the radiator is achieved by a minimum weight of the mounted heat pipes. Hence, size of the mounted heat pipes is optimized. A thermal model was built and parameterized for transient thermal analysis and optimization. Temperature requirements of components in both worst case conditions (Hot case and cold case) were satisfied under optimal sizing of mounted heat pipes.展开更多
Particle melting and substrate temperature are important in controlling deposited density and residual stress in thermal plasma deposition of refractory materials. In this paper, both the heating and cooling behaviour...Particle melting and substrate temperature are important in controlling deposited density and residual stress in thermal plasma deposition of refractory materials. In this paper, both the heating and cooling behaviours of tungsten particles inside a radio frequency inductively coupled plasma (ICP) and the plasma heat flux to the substrate were investigated. The distribution of the plasma-generated heat on device, powder injection probe, deposition chamber, and substrate was determined by measuring the water flow rate and the flow-in and flow-out water temperatures in the four parts. Substrate temperature was measured by a two-colour pyrometer during the ICP deposition of tungsten. Experimental results show that the heat flux to the substrate accounts for about 20% of the total plasma energy, the substrate temperature can reach as high as 2100 K, and the heat loss by radiation is significant in the plasma deposition of tungsten.展开更多
From the microstructure of heat radiation, the interaction between theincident heat radiative wave and the electromagnetism syntonic wave is analyzed to reveal theemission, absorption, transmission and reflection mech...From the microstructure of heat radiation, the interaction between theincident heat radiative wave and the electromagnetism syntonic wave is analyzed to reveal theemission, absorption, transmission and reflection mechanisms of the incident heat radiative wave inmaterials. Based on Lorentz dispersion theory, the effect of optical parameters on heat radiativecharacteristics is also analyzed. The method of ultra-attenuation and nanocrystallization improvingthe heat radiative characteristics of the material and the emissivity dispersion of theultra-attenuated materials are brought to light.展开更多
Using the model of the inverse Compton scattering between high-energy electrons and heat-radiation photons, the influence of heat-radiating photons on multi-photon Compton scattering high-energy electrons is studied ....Using the model of the inverse Compton scattering between high-energy electrons and heat-radiation photons, the influence of heat-radiating photons on multi-photon Compton scattering high-energy electrons is studied . The results show that the energy loss, power loss, light resistance and light pressure of the high-energy electron formed by heat radiating are all proportional to the temperature T4 of the vacuum cavity of the electron,the Lorentz factor γ2 of the high-energy electrons, the scattering section of the electron and the number of photons acting at the same time with high-energy electrons. A good method for lessening the energy loss of the high-energy electron by using the one-photon Compton scattering between high-energy electrons and heat radiation photons is proposed.展开更多
Micropores are decisive to mechanical properties and thermal deformation capabilities of powder met-allurgy(P/M)Ti alloys sintered compacts.As a result,achieving express densification is of prime im-portance and has a...Micropores are decisive to mechanical properties and thermal deformation capabilities of powder met-allurgy(P/M)Ti alloys sintered compacts.As a result,achieving express densification is of prime im-portance and has attracted increasing attention recently.Induction heating owns the merits of high effi-ciency,short process,and low cost,and thus has huge potential to be used as a sintering approach for the fabrication of P/M Ti alloys.Nevertheless,the facilitated densification behavior associated with induction heating sintering remains unclear so far.To address it,powder metallurgy Ti6Al4V is manufactured via induction heating sintering with which the underlying sintering mechanism is investigated in-depth.It is found that induction heating could generate a fully densified compact in a remarkably shortened time,demonstrating its superior sintering efficiency as compared with conventional resistance furnace heat-ing.COMSOL finite element analysis reveals that the maximum current density during induction heating can reach 10^(6)A m^(–2)though the magnetic field strength is solely 0.02 T,leading to a slight tempera-ture difference of approximately 30℃between the interior and exterior of the billet.Furthermore,the rapid heating essentially starts at sharp corners of particles due to the potent current concentration ef-fect,which facilitates the cracking of the particle surface oxide film and thus enhances the direct contact between them.Moreover,the electromigration effect caused by induction current promotes the diffusion capability of elements,giving rise to expedited densification,alloying,and chemical homogenization.This work provides not only critical insight into the sintering mechanism of induction heating sintering but also significant guidance for low-cost powder metallurgy materials preparation.展开更多
基金financially supported by the Program for New Century Excellent Talents in University(No.NCET-13-0229,NCET-09-0396)the National Science & Technology Key Projects of Numerical Control(No.2012ZX04010-031,2012ZX0412-011)the National High Technology Research and Development Program("863"Program)of China(No.2013031003)
文摘For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.
基金Sponsored by the National "973" Program Projects(652345)
文摘A concise formula for computing radiation heat flow of in-cylinder soot is presented, based on the assumptions that in-cylinder heat transfer of diesel engines is a quasi-equilibrium process and in-cylinder soot particles are spherical. That in this formula there consist neither constants needing adjustments nor variables related to engine types or operating conditions makes it universal and easy to use. Also it can be seen from the formula that radiation heat transfer is proportional to the quotient of in-cylinder soot mass over the average radius of primary particles. Besides, with the help of different algorithms it can be used for predicting cylinders' global as well as local radiation heat flows. As a demonstrative application on its global facet, a three-dimension simulation study about the soot-radiation-related heat flow in the combustion chamber of a diesel engine is carried out. Results show that the range of the soot-radiation-related heat flow computed by this formula agrees well with other researcher's earlier theoretic reasoning and experimental measurements.
基金supported by the National Natural Science Foundation of China(No.52006114).
文摘Building is an important scenario for achieving global carbon peak and carbon neutrality goals,accounting for approximately 37%of global energy-related CO_(2) emissions in 2020.In the meanwhile,the construction and operation of buildings was responsible for 36%of global energy consumption,of which 30%energy was used for space heating.Therefore,this paper proposes a low-carbon building heating system that is coupled to a new semiconductor radiation heating unit and distributed rooftop photovoltaic to reduce carbon emissions.To reveal its building heating characteristics,a dynamic model of heat transfer based on semiconductor low-temperature radiant heating is first established by analyzing the heat conduction,convection,and radiation models,and the uncertainty from both the distributed rooftop photovoltaic and building heating demand is considered in the building heating operation strategy.Then,a simulation model of a low-carbon building heating system is built in MATLAB/SIMULINK for two different climate zones in China(Beijing and Wuhan).When building and using the low-carbon building heating system stable for 30 years,the payback period is 5.2–8.2 years in Beijing and 6.4–11.6 years in Wuhan.Compared with the traditional grid-powered heating system,the simulation revealed that the carbon emissions of Beijing and Wuhan during the heating season are reduced by 44.9%and 44.3%,respectively,and the corresponding building heating cost is saved by 62.1%and 57.8%.
基金the financial support from National Natural Science Foundation of China(No.51976216,No.51888103)the Ministry of Science and Technology of China(2017YFA0402800)+2 种基金Beijing Municipal Natural Science Foundation(JQ20017)K.C.Wong Education FoundationRecruitment Program of Global Youth Experts。
文摘In the past 30 years,the effect of thermal radiation and convection heat transfer,which are predominant at high temperature and can affect the measurement accuracy of thermocouple,were not fully considered in the field of laminar flame researches.In this work,the effect of thermal radiation heat transfer was newly calculated by determining the spectral irradiation heat flux from the whole space to thermocouple and the radiation heat loss from thermocouple junction to surroundings.Analysis reveals that the thermocouple itself maintains at high temperature,resulting serious thermal radiation heat loss,which can be compensated via receiving energy from convection-transferred heat as well as thermal radiation emitted by flame and burner surface.Such method was applied to correct the temperatures measured by thermocouple in rich nitromethane flame as reference.The results indicate that the radiation heat loss plays a dominant role,while the radiations emitted by flame and burner surface account for minor contribution with the percentage of 20.78%at the height above burner(HAB)of 0.4 mm,3.63%at HAB of 2.0 mm and even smaller at higher HAB.Temperature correction states that the maximum temperature error is 117.60 K,where the effect of thermal radiation emitted by flame and burner surface is less than 1.75 K.Consequently,it is provably reasonable and feasible to concentrate on the radiation heat loss and ignore the effect of thermal radiation emitted by flame and burner in real combustion processes.
基金financially supported by the National Natural Science Foundation of China (No.50464004)
文摘A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method".
基金supported by the Second Stage of Brain Korea 21 Projects
文摘Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.
文摘An inverse method is presented for estimating the unknown boundary incident radiation heat flux onone side of one-dimensional semitransparent planar slab with semitransparent boundaries from theknowledge of the radiation intensities exiting from the other side. The inverse problem is solved usingconjugate gradient method of minimization based on discrete ordinates method (DOM) of radiativetransfer equation. The equations of sensitivity coefficients are derived and easily solved by DOM, withthe result that the complicated numerical differentiation commonly used in solving sensitivity coefficients is avoided. The effects of anisotropic scattering, absorption coefficient, scattering coefficient,boundary reflectivity, fluid temperature outside the boundaries, convection heat transfer coefficients,conduction coefficient of semitransparent media and slab thickness on the accuracy of the inverse analysis are investigated. The results show that the boundary incident radiation heat flux can be estimatedaccurately, even with noisy data.
基金funded by National Key Research and Development Program of China(Grant No.2017YFB0602002,and Grant No.2016YFC0203700)。
文摘Under the back-side windy condition,the convection and radiation heat transfer characteristics in an iso-flux upward-facing cylindrical cavity were studied by three-dimensional numerical simulation.The impacts of cavity tilt angle,wind incident angle and wind speed on convection and radiation heat transfer Nusselt number Nuc and Nur were analyzed,and the possible explanations for their impacts were presented.Results show that due to the disturbance of wind,the influence of cavity tilt angle becomes more complicated and is related to wind incident angle and wind speed.The variation of Nuc or Nur with wind incident angle is different for different cavity tilt angles.Despite of the changes of cavity tilt angle or wind incident angle,the Nuc increases with the wind speed while the Nur presents a declination with the increasing of wind speed.Hence,compared with cavity tilt angle and wind incident angle,wind speed may be the dominant factor affecting or controlling the convective and radiation heat transfer of cavity.
基金Sponsored by the Strategic Japanese-Chinese Cooperation Program (Grant No.2011DFA91210)the Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF.2014075),the Fundamental Research Funds for the Central Universities (Grant No.HIT.KISTP.201419)the Natural Science Foundation of Heilongjiang Province (Grant No.E201316)
文摘Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.
文摘The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies.
文摘The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.
基金Project supported by the China Postdoctoral Science Foundation(No.2015M580069)
文摘This paper introduces a new model for the Fourier law of heat conduction with the time-fractional order to the generalized Maxwell fluid. The flow is influenced by magnetic field, radiation heat, and heat source. A fractional calculus approach is used to establish the constitutive relationship coupling model of a viscoelastic fluid. We use the Laplace transform and solve ordinary differential equations with a matrix form to obtain the velocity and temperature in the Laplace domain. To obtain solutions from the Laplace space back to the original space, the numerical inversion of the Laplace transform is used. According to the results and graphs, a new theory can be constructed. Comparisons of the associated parameters and the corresponding flow and heat transfer characteristics are presented and analyzed in detail.
基金This work was supported by the National NatUral Science Foundation of China! (No 59982003) Guangdong Provincial NatUral Scie
文摘This is the first report of using the microwave heating technique to synthesize calcium sulphide activated by europium whose structure is determined as the face-centered cubic by conventional X-ray powder diffraction method. The phosphor has maximum excitation peaks located at 280 urn and 560 urn and the maximum emission of the phosphor is 630 nm. When the concentration of Eu^(2+) in CaS increases from I .0 × 10^(-5) to l.0 × 10^(-2) mole per mole host, the body colour of the calcium sulphide activated with europium changes from white, through light-red to pink to deep-red. The phosphor obtains the longest afterglow at the concentration of 0.1% Eu^(2+)doped and is a kind of good material excited by sunlight.
文摘Satellite-derived data of the outgoing longwave radiation (OLR), net shortwave radiation at thetropopause (SRT) and circulation information as predicted by NCEP are used in the work to study seasonal variations of net radiative heating in the earth-atmospheric system and its relationship with the Asian summer monsoon. As is shown in the result, the zonal deviations of the zonal deviations of the heating, manifested as mutations in direction between land and sea with seasons, is an indication of the thermal difference between them.Being a month earlier than that in the general circulation from spring to summer, the seasonal reversal of directionmay be playing an essential role in triggering the onset and withdrawal of summer monsoon in Asia.
基金Project(50876016) support by the National Natural Science Foundation of China
文摘An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.
文摘Satellite's thermal control subsystem (TCS) has to maintain components and structure within their specified temperature limits during satellite service life. TCS designers have to face the challenge of reducing both the weight of the system and required heater power while keeping components temperature within their design range. For a space based heat pipe radiator system, several researchers have published different approaches to reach such goal. This paper presents a thermal design and optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a prospective communication satellite payload panel with applied passive thermal control techniques was considered. The thermal passive techniques used in this design mainly include multilayer insulation (MLI) blankets, optical solar reflectors (OSR), selected thermal coatings, interface fillers and constant conductance heat pipes. The heat pipe network is comprised of some heat pipes embedded in the panel and some mounted on inner surface of the panel. Embedded heat pipes are placed under high heat dissipation equipments and their size is fixed; minimum weight of the radiator is achieved by a minimum weight of the mounted heat pipes. Hence, size of the mounted heat pipes is optimized. A thermal model was built and parameterized for transient thermal analysis and optimization. Temperature requirements of components in both worst case conditions (Hot case and cold case) were satisfied under optimal sizing of mounted heat pipes.
文摘Particle melting and substrate temperature are important in controlling deposited density and residual stress in thermal plasma deposition of refractory materials. In this paper, both the heating and cooling behaviours of tungsten particles inside a radio frequency inductively coupled plasma (ICP) and the plasma heat flux to the substrate were investigated. The distribution of the plasma-generated heat on device, powder injection probe, deposition chamber, and substrate was determined by measuring the water flow rate and the flow-in and flow-out water temperatures in the four parts. Substrate temperature was measured by a two-colour pyrometer during the ICP deposition of tungsten. Experimental results show that the heat flux to the substrate accounts for about 20% of the total plasma energy, the substrate temperature can reach as high as 2100 K, and the heat loss by radiation is significant in the plasma deposition of tungsten.
文摘From the microstructure of heat radiation, the interaction between theincident heat radiative wave and the electromagnetism syntonic wave is analyzed to reveal theemission, absorption, transmission and reflection mechanisms of the incident heat radiative wave inmaterials. Based on Lorentz dispersion theory, the effect of optical parameters on heat radiativecharacteristics is also analyzed. The method of ultra-attenuation and nanocrystallization improvingthe heat radiative characteristics of the material and the emissivity dispersion of theultra-attenuated materials are brought to light.
基金Natural Science Foundation of Zhumadian City(058002)
文摘Using the model of the inverse Compton scattering between high-energy electrons and heat-radiation photons, the influence of heat-radiating photons on multi-photon Compton scattering high-energy electrons is studied . The results show that the energy loss, power loss, light resistance and light pressure of the high-energy electron formed by heat radiating are all proportional to the temperature T4 of the vacuum cavity of the electron,the Lorentz factor γ2 of the high-energy electrons, the scattering section of the electron and the number of photons acting at the same time with high-energy electrons. A good method for lessening the energy loss of the high-energy electron by using the one-photon Compton scattering between high-energy electrons and heat radiation photons is proposed.
基金supported by the National Key Research and Development Program of China(No.2020YFB2008300)the National Natural Science Foundation of China(Nos.51971097 and 52301147)+2 种基金the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(No.YESS20210054)the Hubei Province Natural Science Foundation(No.ZRMS2022000863)the Fundamental Research Funds for the Central Universities of Huazhong University of Science and Technology(No.2172021XXJS010)and the project supported by State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Micropores are decisive to mechanical properties and thermal deformation capabilities of powder met-allurgy(P/M)Ti alloys sintered compacts.As a result,achieving express densification is of prime im-portance and has attracted increasing attention recently.Induction heating owns the merits of high effi-ciency,short process,and low cost,and thus has huge potential to be used as a sintering approach for the fabrication of P/M Ti alloys.Nevertheless,the facilitated densification behavior associated with induction heating sintering remains unclear so far.To address it,powder metallurgy Ti6Al4V is manufactured via induction heating sintering with which the underlying sintering mechanism is investigated in-depth.It is found that induction heating could generate a fully densified compact in a remarkably shortened time,demonstrating its superior sintering efficiency as compared with conventional resistance furnace heat-ing.COMSOL finite element analysis reveals that the maximum current density during induction heating can reach 10^(6)A m^(–2)though the magnetic field strength is solely 0.02 T,leading to a slight tempera-ture difference of approximately 30℃between the interior and exterior of the billet.Furthermore,the rapid heating essentially starts at sharp corners of particles due to the potent current concentration ef-fect,which facilitates the cracking of the particle surface oxide film and thus enhances the direct contact between them.Moreover,the electromigration effect caused by induction current promotes the diffusion capability of elements,giving rise to expedited densification,alloying,and chemical homogenization.This work provides not only critical insight into the sintering mechanism of induction heating sintering but also significant guidance for low-cost powder metallurgy materials preparation.