In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides w...In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides with two different doses,2×10 15 and 3×10 15 cm -2 ,respectively.The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source.Despite the small difference between the doses of nitrogen implantation,the nitrogen-implanted 2×10 15 cm -2 BOX has a much higher hardness than the control sample (i.e.the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5×104rad(Si),whereas the nitrogen-implanted 3×10 15 cm -2 BOX has a lower hardness than uhe control sample.However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5×104 to 5×105rad (Si)).The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed.In addition,the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.展开更多
The optoelectronic reliability of representative radioactivity-exposed nanophotodetectors and the degree of functionally tolerable radioactivity-induced responsivity de-emphasis, against increasing cumulative radioact...The optoelectronic reliability of representative radioactivity-exposed nanophotodetectors and the degree of functionally tolerable radioactivity-induced responsivity de-emphasis, against increasing cumulative radioactivity-dose, is notionally considered and modelled, with a view towards experimental findings concerning p-i-n photosensors being exposed to regulated successive (α, β)-particle bombardments.展开更多
This paper presents a low power, area-efficient and radiation-hardened 12-bit 1 MS/s successive approx- imation register (SAR) analog-to-digital converter (ADC) for multi-channel CdZnTe (CZT) detector applicatio...This paper presents a low power, area-efficient and radiation-hardened 12-bit 1 MS/s successive approx- imation register (SAR) analog-to-digital converter (ADC) for multi-channel CdZnTe (CZT) detector applications. In order to improve the SAR-ADC's accuracy, a novel comparator is proposed in which the offset voltage is self- calibrated and also a new architecture for the unit capacitor array is proposed to reduce the capacitance mismatches in the charge-redistribution DAC. The ability to radiation-harden the SAR-ADC is enhanced through circuit and layout design technologies. The prototype chip was fabricated using a TSMC 0.35 μm 2P4M CMOS process. At a 3.3/5 V power supply and a sampling rate of 1 MS/s, the proposed SAR-ADC achieves a peak signal to noise and distortion ratio (SINAD) of 67.64 dB and consumes only 10 mW power. The core of the prototype chip occupies an active area of 1180 ×1080μm2.展开更多
文摘In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides with two different doses,2×10 15 and 3×10 15 cm -2 ,respectively.The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source.Despite the small difference between the doses of nitrogen implantation,the nitrogen-implanted 2×10 15 cm -2 BOX has a much higher hardness than the control sample (i.e.the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5×104rad(Si),whereas the nitrogen-implanted 3×10 15 cm -2 BOX has a lower hardness than uhe control sample.However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5×104 to 5×105rad (Si)).The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed.In addition,the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.
文摘The optoelectronic reliability of representative radioactivity-exposed nanophotodetectors and the degree of functionally tolerable radioactivity-induced responsivity de-emphasis, against increasing cumulative radioactivity-dose, is notionally considered and modelled, with a view towards experimental findings concerning p-i-n photosensors being exposed to regulated successive (α, β)-particle bombardments.
基金supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development(No.2011YQ040082)
文摘This paper presents a low power, area-efficient and radiation-hardened 12-bit 1 MS/s successive approx- imation register (SAR) analog-to-digital converter (ADC) for multi-channel CdZnTe (CZT) detector applications. In order to improve the SAR-ADC's accuracy, a novel comparator is proposed in which the offset voltage is self- calibrated and also a new architecture for the unit capacitor array is proposed to reduce the capacitance mismatches in the charge-redistribution DAC. The ability to radiation-harden the SAR-ADC is enhanced through circuit and layout design technologies. The prototype chip was fabricated using a TSMC 0.35 μm 2P4M CMOS process. At a 3.3/5 V power supply and a sampling rate of 1 MS/s, the proposed SAR-ADC achieves a peak signal to noise and distortion ratio (SINAD) of 67.64 dB and consumes only 10 mW power. The core of the prototype chip occupies an active area of 1180 ×1080μm2.