Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous ...Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.展开更多
[Objective] This study aimed to reveal the impact of radiative forcing on the woody plants in subtropical regions of China through the study on the effect of radiative forcing on growth and photosynthetic responses of...[Objective] This study aimed to reveal the impact of radiative forcing on the woody plants in subtropical regions of China through the study on the effect of radiative forcing on growth and photosynthetic responses of Elaecarpus glabripetalus Merr. seedlings. [Method] Three gradients of radiative forcing treatments were applied to the species namely, control group (100% natural light), weak radiative forcing group (39% natural light) and strong radiative forcing group (16% natural light). The relative contents of chlorophyll, photosynthetic parameters of E. glabripetalus in different periods were measured to analyze the effects of different gradients of radiative forcing on plant height, ground diameter, chlorophyll content, gas exchange parameters, light response cure parameters. [Result] The increased ground diameter of E. glabripetalus in different treatments was the control weak radiative forcing group strong radiative forcing group; the increased plant height in the early period was strong radiative forcing group weak radiative forcing group control, but there was no significant difference during the late period; the relative content of chlorophyll was strong radiative forcing group weak radiative forcing group control. The light compensation point (LCP), light saturation point (LSP) and the maximum net photosynthetic rate (A max ) were reduced in radiative forcing treatments. The stomatal conductance (G s ), transpiration rate (Tr) of E. glabripetalus in strong radiative forcing group were significantly smaller than that in the control group, while there was no significant change in dark respiration rate (R d ) and apparent quantum yield (AQY). [Conclusion] In summary, the radiative forcing can change the environmental factors which have significant effect on the ground diameter, plant height, relative content of chlorophyll and photosynthetic physiological parameters, but with the processing of treatment the effects on ground diameter and plant height increase are not significant in the late period, indicating that E. glabripetalus seedlings have some resistance and adaptability to the radiative forcing environment.展开更多
The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as seve...The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as several important rivers originate from this region. Therefore, even slight alternations in the TP’s hydrological cycle may have profound ecological and social impacts. However, it is experiencing a significant increase in accumulation of dust from local and global sources. The impact of dust on the region’s climate has become an active area of research. Further, the study of sources of dust arriving at the TP is also critical. Accumulation of dust is impacting temperature, snow cover, glaciers, water resources, biodiversity and soil desertification. This manuscript tries to provide a comprehensive summary of the impact of dust on weather, climate, and environmental components of the TP. The impact of dust on clouds, radiative energy, precipitation, atmospheric circulation, snow and ice cover, soil, air quality, and river water quality of the TP are discussed. It further discusses the steps immediately needed to mitigate the devastating impact of dust on the fragile ecosystem of the TP.展开更多
The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause nega...The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.展开更多
The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigat...The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29μg m-3 in January and 8 μg m-3 in July. Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m 2 in January and -2.65 W m 2 in July, respectively. In some areas, indirect radiative forcing reaches -10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are 0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.展开更多
This study simulates the effective radiative forcing (ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol-climate coupled model, BCC_AGCM2.0. I_CUACE/Aero, in combination ...This study simulates the effective radiative forcing (ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol-climate coupled model, BCC_AGCM2.0. I_CUACE/Aero, in combination with OMI (Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric col- umn ozone (TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere; and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m-2, thereby causing an increase in the global annual mean surface temperature by 0.36°C, and precipitation by 0.02 mm d-1 (the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4°C in Siberia. There were opposite changes in precipitation near the equator, with an increase of 0.5 mm d- 1 near the Hawaiian Islands and a decrease of about -0.6 mm d- 1 near the middle of the Indian Ocean.展开更多
The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The se...The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The seasonal variations in the aerosol optical properties are examined. The effect of meteorological elements (pressure, temperature, water vapor pressure, relative humidity and wind speed) on the aerosol optical properties is also studied. Then, the sources and optical properties under two different cases, a dust event and a pollution event, are compared. The results show that the high aerosol optical depth (AOD) found in Yulin was mostly attributed to the occurrence of dust events in spring from the Mu Us desert and deserts of West China and Mongolia, as well as the impacts of anthropogenic pollutant particles from the middle part of China in the other seasons. The seasonal variation and the probability distribution of the radiative forcing and the radiative forcing efficiency at the surface and the top of the atmosphere are analyzed and regressed using the linear and Gaussian regression methods.展开更多
Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model deve...Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed.展开更多
There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity...There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering aibedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.展开更多
The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical proper...The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical properties of sulfate aerosols are also sensitive to atmospheric relative humidity, in this study we first examine the scheme for optical properties that considers hydroscopic growth. Next, we investigate the seasonal and regional distributions of sulfate DRF using the sulfate loading simulated from NCAR CAM-Chem together with the meteorology modeled from a spectral atmospheric general circulation model (AGCM) developed by LASG-IAP. The global annual-mean sulfate loading of 3.44 mg m-2 is calculated to yield the DRF of -1.03 and -0.57 W m-2 for clear-sky and all-sky conditions, respectively. However, much larger values occur on regional bases. For example, the maximum all-sky sulfate DRF over Europe, East Asia, and North America can be up to -4.0 W m-2. The strongest all-sky sulfate DRF occurs in the Northern Hemispheric July, with a hemispheric average of -1.26 W m-2. The study results also indicate that the regional DRF are strongly affected by cloud and relative humidity, which vary considerably among the regions during different seasons. This certainly raises the issue that the biases in model-sinmlated regional meteorology can introduce biases into the sulfate DRF. Hence, the model processes associated with atmospheric humidity and cloud physics should be modified in great depth to improve the simulations of the LASG-IAP AGCM and to reduce the uncertainty of sulfate direct effects on global and regional climate in these simulations.展开更多
This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4...This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.展开更多
Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluat...Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.展开更多
The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGC...The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.展开更多
Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Ind...Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Indian monsoon region are compared. Although both of the Indian monsoon region and the eastern China are included in the Asian monsoon region and the seasonal cycles of rainfall are in phase, the properties of clouds and related cloud radiative forcing are significantly different. All of cloud components in the Indian region have similar phase structure of seasonal cycle. The maximum cloud fractions occur in the summer monsoon period and high clouds dominate the total cloud fraction. However, the seasonal features of clouds in the eastern China are complex. It is the mid-low clouds rather than high clouds dominating the total cloud fraction. The maximum total cloud fraction occurs in spring season. The total cloud and mid-low cloud fractions in winter season are larger than that in summer season. A unique global distinction of clouds in the eastern China is the largest cover of nimbostratus clouds. Reflecting to the cloud properties, the maximums of negative short wave, positive long wave and negative net cloud radiative forcing in the Indian monsoon region are in the summer season. In the eastern China, large negative short wave cloud radiative forcing occurs in early summer. The annual mean negative net cloud radiative forcing in the eastern China is obviously larger than that in the Indian region. Key words Cloud Radiative Forcing - Cloud Fraction Monsoon - Nimbostratus This work was jointly supported by the National Natural Science Foundation of China (Grant No.40023001) and Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate system models”.展开更多
This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) em...This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) emissions inventories and a fully coupled chemistry-aerosol general circulation model. As compared to the previous Global Emissions Inventory Activity (GEIA) data, that have been commonly used for forcing estimates since 1990, the IPCC AR5 emissions inventories report lower anthropogenic emissions of organic carbon and black carbon aerosols and higher sulfur and NOx emissions. The simulated global and annual mean burdens of sulfate, nitrate, black carbon (BC), primary organic aerosol (POA), secondary organic aerosol (SOA), and ozone were 0.79, 0.35, 0.05, 0.49, 0.34, and 269 Tg, respectively, in the year 1850, and 1.90, 0.90, 0.11, 0.71, 0.32, and 377 Tg, respectively, in the year 2000. The estimated annual mean top of the atmosphere (TOA) direct radiative forcing of all anthropogenic aerosols based on the AR5 emissions inventories is -0.60 W m^-2 on a global mean basis from 1850 to 2000. However, this is -2.40 W m-2 when forcing values are averaged over eastern China (18-45°N and 95-125°E). The value for tropospheric ozone is 0.17 W m^-1 on a global mean basis and 0.24 W m^-2 over eastern China. Forcing values indicate that the climatic effect of aerosols over eastern China is much more significant than the globally averaged effect.展开更多
The indirect radiative and climatic effects of sulfate and organic carbon aerosols over East Asia were investigated using a Regional Integrated Environment Model System (RIEMS) with an empirical aerosol-cloud paramete...The indirect radiative and climatic effects of sulfate and organic carbon aerosols over East Asia were investigated using a Regional Integrated Environment Model System (RIEMS) with an empirical aerosol-cloud parameterization.The first indirect radiative forcing was negative and ranged from-9-0 W m-2 in the domain.The maximum cooling,up to-9 W m-2,occurred in the Chongqing District in winter,whereas the cooling areas were larger during summer than in winter.Organic carbon (OC) aerosols were more abundant in winter than in summer,whereas the sulfate concentration during summer was much higher than during winter.The concentrations of sulfate and OC were comparable in winter,and sulfate played a dominant role in determining indirect radiative forcing in summer,whereas in winter,both sulfate and OC were important.The regional mean indirect radiative forcings were-0.73 W m-2 and-0.41 W m-2 in summer and winter,respectively.The surface cooling caused by indirect effects was more obvious in winter than that in summer.The ground temperature decreased by ~1.2 K in most areas of eastern China in winter,whereas in summer,the temperature decreased (~-1.5 K) in some regions,such as the Yangtze River region,but increased (~0.9 K) in the areas between the Yellow and Yangtze Rivers.In winter,the precipitation decreased by 0-6 mm in most areas of eastern China,but in summer,alternating bands of increasing (up to 80 mm) and decreasing (~-80 mm) precipitation appeared in eastern China.展开更多
An atmospheric general circulation model BCC_AGCM2.0 and observation data from ARIS were used to calculate the effective radiative forcing(ERF) due to increased methane concentration since pre-industrial times and i...An atmospheric general circulation model BCC_AGCM2.0 and observation data from ARIS were used to calculate the effective radiative forcing(ERF) due to increased methane concentration since pre-industrial times and its impacts on climate. The ERF of methane from 1750 to2011 was 0.46 W m^-2 by taking it as a well-mixed greenhouse gas, and the inhomogeneity of methane increased its ERF by about 0.02 W m^-2.The change of methane concentration since pre-industrial led to an increase of 0.31 ℃ in global mean surface air temperature and 0.02 mm d 1in global mean precipitation. The warming was prominent over the middle and high latitudes of the Northern Hemisphere(with a maximum increase exceeding 1.4℃). The precipitation notably increased(maximum increase of 1.8 mm d^-1) over the ocean between 10°N and 20° N and significantly decreased(maximum decrease 〉-0.6 mm d^-1) between 10° S and 10° N. These changes caused a northward movement of precipitation cell in the Intertropical Convergence Zone(ITCZ). Cloud cover significantly increased(by approximately 4%) in the high latitudes in both hemispheres, and sharply decreased(by approximately 3%) in tropical areas.展开更多
Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer...Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model with inputs from MODIS and AERONET observations and reanalysis data. Results show that there are significant seasonal and regional differences in climatological mean aerosol optical parameters and ADRF. Higher aerosol optical depth(AOD)occurs in summer and two prominent high aerosol loading centers are observed. Higher single scattering albedo(SSA) in summer is likely associated with the weak absorbing secondary aerosols. SSA is higher in North China during summer but higher in South China during winter. Aerosols induce negative forcing at the top of the atmosphere(TOA) and surface during both winter and summer, which may be responsible for the decrease in temperature and the increase in relative humidity.Values of ADRF at the surface are four times stronger than those at the TOA. Both AOD and ADRF present strong interannual variations; however, their amplitudes are larger in summer. Moreover, patterns and trends of ADRF do not always correspond well to those of AOD. Differences in the spatial distributions of ADRF between strong and weak monsoon years are captured effectively. Generally, the present results justify that to calculate grid-cell ADRF at a large scale using the SBDART model with observational aerosol optical properties and reanalysis data is an effective approach.展开更多
The International Centre for Theoretical Physics(ICTP,Italy) Regional Climate Model version 3.0(RegCM3) is used to simulate spatio-temporal distribution characteristics and radiative forcing(RF) of organic carbon(OC) ...The International Centre for Theoretical Physics(ICTP,Italy) Regional Climate Model version 3.0(RegCM3) is used to simulate spatio-temporal distribution characteristics and radiative forcing(RF) of organic carbon(OC) aerosols in and around China.The preliminary simulation results show that OC aerosols are mostly concentrated in the area to the south of Yellow River and east of Tibetan Plateau.There is a decreasing trend of column burden of OC aerosols from south to north in China.The maximum value of column burden of OC aerosols is above 3 mg/m2 and located in the central and southern China,southeastern Tibet,and southwestern China's Yunnan,Guizhou,Sichuan provinces.The simulation on the seasonal variation shows that the maximum value of column burden of OC aerosols appears in winter and the secondary value is in spring and the minimum in summer.The RF of OC aerosols which varies seasonally is negative at the top of the atmosphere(TOA) and surface.The spatio-temporal characteristics of the RF of OC aerosols are basically consistent with that of IPCC,implying the high accuracy of the parameterization scheme for OC aerosols in RegCM3.展开更多
The authors used a high-resolution regional climate model (RegCM3) coupled with a chemistry/ aerosol module to simulate East Asian climate in 2006 and to test the climatic impacts of aerosols on regional- scale clim...The authors used a high-resolution regional climate model (RegCM3) coupled with a chemistry/ aerosol module to simulate East Asian climate in 2006 and to test the climatic impacts of aerosols on regional- scale climate. The direct radiative forcing and climatic effects of aerosols (dust, sulfate, black carbon, and organic carbon) were discussed. The results indicated that aerosols generally produced negative radiative forcing at the top-of-the-atmosphere (TOA) over most areas of East Asia. The radiative forcing induced by aerosols exhibited significant seasonal and regional variations, with the strongest forcing occurring in summer. The aerosol feed- backs on surface air temperature and precipitation were clear. Surface cooling dominated features over the East Asian continental areas, which varied in the approximate range of-0.5 to -2℃ with the maximum up to -3℃ in summer over the deserts of West China. The aerosols induced complicated variations of precipitation. Except in summer, the rainfall generally varied in the range of-1 to 1 mm d^-1 over most areas of China.展开更多
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0605)the National Natural Science Foundation of China(41971080)the support of Youth Innovation Promotion Association CAS(2021429)。
文摘Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.
基金Supported by the Major International Cooperation Project of the Ministry of Science and Technology of China (20073819)the National High-tech R&D Program of China (2009AA122001, 2009AA122005)+3 种基金the Major Basic Project of the Ministry of Science and Technology of China (2007FY110300-08)the State Key Development Program for Basic Research of China (2010CB950702, 2010CB428503)the National Natural Science Foundation of China (40671132)the Major Project for Science and Technology of Zhejiang Province, China (2008C13G2100010)~~
文摘[Objective] This study aimed to reveal the impact of radiative forcing on the woody plants in subtropical regions of China through the study on the effect of radiative forcing on growth and photosynthetic responses of Elaecarpus glabripetalus Merr. seedlings. [Method] Three gradients of radiative forcing treatments were applied to the species namely, control group (100% natural light), weak radiative forcing group (39% natural light) and strong radiative forcing group (16% natural light). The relative contents of chlorophyll, photosynthetic parameters of E. glabripetalus in different periods were measured to analyze the effects of different gradients of radiative forcing on plant height, ground diameter, chlorophyll content, gas exchange parameters, light response cure parameters. [Result] The increased ground diameter of E. glabripetalus in different treatments was the control weak radiative forcing group strong radiative forcing group; the increased plant height in the early period was strong radiative forcing group weak radiative forcing group control, but there was no significant difference during the late period; the relative content of chlorophyll was strong radiative forcing group weak radiative forcing group control. The light compensation point (LCP), light saturation point (LSP) and the maximum net photosynthetic rate (A max ) were reduced in radiative forcing treatments. The stomatal conductance (G s ), transpiration rate (Tr) of E. glabripetalus in strong radiative forcing group were significantly smaller than that in the control group, while there was no significant change in dark respiration rate (R d ) and apparent quantum yield (AQY). [Conclusion] In summary, the radiative forcing can change the environmental factors which have significant effect on the ground diameter, plant height, relative content of chlorophyll and photosynthetic physiological parameters, but with the processing of treatment the effects on ground diameter and plant height increase are not significant in the late period, indicating that E. glabripetalus seedlings have some resistance and adaptability to the radiative forcing environment.
文摘The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as several important rivers originate from this region. Therefore, even slight alternations in the TP’s hydrological cycle may have profound ecological and social impacts. However, it is experiencing a significant increase in accumulation of dust from local and global sources. The impact of dust on the region’s climate has become an active area of research. Further, the study of sources of dust arriving at the TP is also critical. Accumulation of dust is impacting temperature, snow cover, glaciers, water resources, biodiversity and soil desertification. This manuscript tries to provide a comprehensive summary of the impact of dust on weather, climate, and environmental components of the TP. The impact of dust on clouds, radiative energy, precipitation, atmospheric circulation, snow and ice cover, soil, air quality, and river water quality of the TP are discussed. It further discusses the steps immediately needed to mitigate the devastating impact of dust on the fragile ecosystem of the TP.
基金supported by Na-tional Basic Research Program of China (Grant No.2006CB403707)the public Meteorology Special Foundation of MOST (Grant No. GYHY200706036)the National Key Technology R & D Program (Grant No.2007BAC03A0)
文摘The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.
基金supported by the National Basic Research Program of China (Grant Nos. 2006CB403706 and 2006CB403703)the National Science and Technology Support Program (Grant No.2007BAC03A01)the Jiangsu Natural Science Foundation (Grant No. BK2006515)
文摘The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29μg m-3 in January and 8 μg m-3 in July. Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m 2 in January and -2.65 W m 2 in July, respectively. In some areas, indirect radiative forcing reaches -10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are 0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.
基金supported by the National Natural Science Foundation of China(Grant No.41575002)
文摘This study simulates the effective radiative forcing (ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol-climate coupled model, BCC_AGCM2.0. I_CUACE/Aero, in combination with OMI (Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric col- umn ozone (TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere; and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m-2, thereby causing an increase in the global annual mean surface temperature by 0.36°C, and precipitation by 0.02 mm d-1 (the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4°C in Siberia. There were opposite changes in precipitation near the equator, with an increase of 0.5 mm d- 1 near the Hawaiian Islands and a decrease of about -0.6 mm d- 1 near the middle of the Indian Ocean.
基金supported by grants from the National Key Project of Basic Research (2006CB403702 and 2006CB403701)the CAMS Basis Research Project and National Natural Science Foundation of China under Grant No. 40405001
文摘The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The seasonal variations in the aerosol optical properties are examined. The effect of meteorological elements (pressure, temperature, water vapor pressure, relative humidity and wind speed) on the aerosol optical properties is also studied. Then, the sources and optical properties under two different cases, a dust event and a pollution event, are compared. The results show that the high aerosol optical depth (AOD) found in Yulin was mostly attributed to the occurrence of dust events in spring from the Mu Us desert and deserts of West China and Mongolia, as well as the impacts of anthropogenic pollutant particles from the middle part of China in the other seasons. The seasonal variation and the probability distribution of the radiative forcing and the radiative forcing efficiency at the surface and the top of the atmosphere are analyzed and regressed using the linear and Gaussian regression methods.
基金supported jointly by the National Natural Science Foundation of China (Grant Nos 40890054 and 40821092)the National Basic Research Program of China (Grant No 2010CB951904)National Key Technologies R&D Program (Grant No 2007BAC29B03)
文摘Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed.
文摘There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering aibedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.
基金supported jointly by the grant from National Basic Research Program of China(Grant No.2012CB955303)and from the Office of Biological and Environmental Sciences,US Department of Energy
文摘The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical properties of sulfate aerosols are also sensitive to atmospheric relative humidity, in this study we first examine the scheme for optical properties that considers hydroscopic growth. Next, we investigate the seasonal and regional distributions of sulfate DRF using the sulfate loading simulated from NCAR CAM-Chem together with the meteorology modeled from a spectral atmospheric general circulation model (AGCM) developed by LASG-IAP. The global annual-mean sulfate loading of 3.44 mg m-2 is calculated to yield the DRF of -1.03 and -0.57 W m-2 for clear-sky and all-sky conditions, respectively. However, much larger values occur on regional bases. For example, the maximum all-sky sulfate DRF over Europe, East Asia, and North America can be up to -4.0 W m-2. The strongest all-sky sulfate DRF occurs in the Northern Hemispheric July, with a hemispheric average of -1.26 W m-2. The study results also indicate that the regional DRF are strongly affected by cloud and relative humidity, which vary considerably among the regions during different seasons. This certainly raises the issue that the biases in model-sinmlated regional meteorology can introduce biases into the sulfate DRF. Hence, the model processes associated with atmospheric humidity and cloud physics should be modified in great depth to improve the simulations of the LASG-IAP AGCM and to reduce the uncertainty of sulfate direct effects on global and regional climate in these simulations.
基金supported by the CAS project under Grant No. KZCX2-YW-Q11-01the Major State Basic Research Development Program of China under Grant No. 2006CB403607the National Natural Science Foundation of China (Grant Nos.40523001, 40821092, 40875034)
文摘This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.
基金supported by the Major National Basic Research Program of China(973 Program)on Global Change(Grant No.2010CB951902)the National Natural Science Foundation of China(Grant No.41221064)the Basic Scientific Research and Operation Foundation of CAMS(Grant No.2010Z003)
文摘Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB955608 and 2011CB403405)the Public Meteorology Special Foundation of MOST (Grant No.GYHY200906020)
文摘The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.
基金the National Natural Science Foundation of China (GrantNo.40023001) Chinese Academy of Sciences under grant " Hundred Talent
文摘Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Indian monsoon region are compared. Although both of the Indian monsoon region and the eastern China are included in the Asian monsoon region and the seasonal cycles of rainfall are in phase, the properties of clouds and related cloud radiative forcing are significantly different. All of cloud components in the Indian region have similar phase structure of seasonal cycle. The maximum cloud fractions occur in the summer monsoon period and high clouds dominate the total cloud fraction. However, the seasonal features of clouds in the eastern China are complex. It is the mid-low clouds rather than high clouds dominating the total cloud fraction. The maximum total cloud fraction occurs in spring season. The total cloud and mid-low cloud fractions in winter season are larger than that in summer season. A unique global distinction of clouds in the eastern China is the largest cover of nimbostratus clouds. Reflecting to the cloud properties, the maximums of negative short wave, positive long wave and negative net cloud radiative forcing in the Indian monsoon region are in the summer season. In the eastern China, large negative short wave cloud radiative forcing occurs in early summer. The annual mean negative net cloud radiative forcing in the eastern China is obviously larger than that in the Indian region. Key words Cloud Radiative Forcing - Cloud Fraction Monsoon - Nimbostratus This work was jointly supported by the National Natural Science Foundation of China (Grant No.40023001) and Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate system models”.
基金supported by the National Natural Science Foundation of China (Grant Nos.90711004 and40825016)the Chinese Academy of Sciences (Grant Nos.KZCX2-YW-Q1 and KZCX2-YW-Q11-03)
文摘This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) emissions inventories and a fully coupled chemistry-aerosol general circulation model. As compared to the previous Global Emissions Inventory Activity (GEIA) data, that have been commonly used for forcing estimates since 1990, the IPCC AR5 emissions inventories report lower anthropogenic emissions of organic carbon and black carbon aerosols and higher sulfur and NOx emissions. The simulated global and annual mean burdens of sulfate, nitrate, black carbon (BC), primary organic aerosol (POA), secondary organic aerosol (SOA), and ozone were 0.79, 0.35, 0.05, 0.49, 0.34, and 269 Tg, respectively, in the year 1850, and 1.90, 0.90, 0.11, 0.71, 0.32, and 377 Tg, respectively, in the year 2000. The estimated annual mean top of the atmosphere (TOA) direct radiative forcing of all anthropogenic aerosols based on the AR5 emissions inventories is -0.60 W m^-2 on a global mean basis from 1850 to 2000. However, this is -2.40 W m-2 when forcing values are averaged over eastern China (18-45°N and 95-125°E). The value for tropospheric ozone is 0.17 W m^-1 on a global mean basis and 0.24 W m^-2 over eastern China. Forcing values indicate that the climatic effect of aerosols over eastern China is much more significant than the globally averaged effect.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos. KZCX2-YW-Q11-03 and KZCX2-YW-Q1-02)the R&D Special Fund for Public Welfare Industry (Meteorology)(Grant No. GYHY200906020)
文摘The indirect radiative and climatic effects of sulfate and organic carbon aerosols over East Asia were investigated using a Regional Integrated Environment Model System (RIEMS) with an empirical aerosol-cloud parameterization.The first indirect radiative forcing was negative and ranged from-9-0 W m-2 in the domain.The maximum cooling,up to-9 W m-2,occurred in the Chongqing District in winter,whereas the cooling areas were larger during summer than in winter.Organic carbon (OC) aerosols were more abundant in winter than in summer,whereas the sulfate concentration during summer was much higher than during winter.The concentrations of sulfate and OC were comparable in winter,and sulfate played a dominant role in determining indirect radiative forcing in summer,whereas in winter,both sulfate and OC were important.The regional mean indirect radiative forcings were-0.73 W m-2 and-0.41 W m-2 in summer and winter,respectively.The surface cooling caused by indirect effects was more obvious in winter than that in summer.The ground temperature decreased by ~1.2 K in most areas of eastern China in winter,whereas in summer,the temperature decreased (~-1.5 K) in some regions,such as the Yangtze River region,but increased (~0.9 K) in the areas between the Yellow and Yangtze Rivers.In winter,the precipitation decreased by 0-6 mm in most areas of eastern China,but in summer,alternating bands of increasing (up to 80 mm) and decreasing (~-80 mm) precipitation appeared in eastern China.
基金supported by the National Natural Science Foundation of China (41575002, 91644211)
文摘An atmospheric general circulation model BCC_AGCM2.0 and observation data from ARIS were used to calculate the effective radiative forcing(ERF) due to increased methane concentration since pre-industrial times and its impacts on climate. The ERF of methane from 1750 to2011 was 0.46 W m^-2 by taking it as a well-mixed greenhouse gas, and the inhomogeneity of methane increased its ERF by about 0.02 W m^-2.The change of methane concentration since pre-industrial led to an increase of 0.31 ℃ in global mean surface air temperature and 0.02 mm d 1in global mean precipitation. The warming was prominent over the middle and high latitudes of the Northern Hemisphere(with a maximum increase exceeding 1.4℃). The precipitation notably increased(maximum increase of 1.8 mm d^-1) over the ocean between 10°N and 20° N and significantly decreased(maximum decrease 〉-0.6 mm d^-1) between 10° S and 10° N. These changes caused a northward movement of precipitation cell in the Intertropical Convergence Zone(ITCZ). Cloud cover significantly increased(by approximately 4%) in the high latitudes in both hemispheres, and sharply decreased(by approximately 3%) in tropical areas.
基金supported by the Chinese Academy of Sciences Strategic Priority Research Program(Grant No.XDA05100303)the National Natural Science Foundation of China(Grant Nos.41230419,91337213 and 41075041)the Special Funds for Public Welfare of China(Grant No.GYHY201306077)
文摘Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model with inputs from MODIS and AERONET observations and reanalysis data. Results show that there are significant seasonal and regional differences in climatological mean aerosol optical parameters and ADRF. Higher aerosol optical depth(AOD)occurs in summer and two prominent high aerosol loading centers are observed. Higher single scattering albedo(SSA) in summer is likely associated with the weak absorbing secondary aerosols. SSA is higher in North China during summer but higher in South China during winter. Aerosols induce negative forcing at the top of the atmosphere(TOA) and surface during both winter and summer, which may be responsible for the decrease in temperature and the increase in relative humidity.Values of ADRF at the surface are four times stronger than those at the TOA. Both AOD and ADRF present strong interannual variations; however, their amplitudes are larger in summer. Moreover, patterns and trends of ADRF do not always correspond well to those of AOD. Differences in the spatial distributions of ADRF between strong and weak monsoon years are captured effectively. Generally, the present results justify that to calculate grid-cell ADRF at a large scale using the SBDART model with observational aerosol optical properties and reanalysis data is an effective approach.
基金National Fundamental Research Program of China (2011CB403202)National Natural Science Foundation of China (40675040)
文摘The International Centre for Theoretical Physics(ICTP,Italy) Regional Climate Model version 3.0(RegCM3) is used to simulate spatio-temporal distribution characteristics and radiative forcing(RF) of organic carbon(OC) aerosols in and around China.The preliminary simulation results show that OC aerosols are mostly concentrated in the area to the south of Yellow River and east of Tibetan Plateau.There is a decreasing trend of column burden of OC aerosols from south to north in China.The maximum value of column burden of OC aerosols is above 3 mg/m2 and located in the central and southern China,southeastern Tibet,and southwestern China's Yunnan,Guizhou,Sichuan provinces.The simulation on the seasonal variation shows that the maximum value of column burden of OC aerosols appears in winter and the secondary value is in spring and the minimum in summer.The RF of OC aerosols which varies seasonally is negative at the top of the atmosphere(TOA) and surface.The spatio-temporal characteristics of the RF of OC aerosols are basically consistent with that of IPCC,implying the high accuracy of the parameterization scheme for OC aerosols in RegCM3.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q11-03)the National Basic Research Program of China(2009CB421407)the National Natural Science Foundation of China(40805030)
文摘The authors used a high-resolution regional climate model (RegCM3) coupled with a chemistry/ aerosol module to simulate East Asian climate in 2006 and to test the climatic impacts of aerosols on regional- scale climate. The direct radiative forcing and climatic effects of aerosols (dust, sulfate, black carbon, and organic carbon) were discussed. The results indicated that aerosols generally produced negative radiative forcing at the top-of-the-atmosphere (TOA) over most areas of East Asia. The radiative forcing induced by aerosols exhibited significant seasonal and regional variations, with the strongest forcing occurring in summer. The aerosol feed- backs on surface air temperature and precipitation were clear. Surface cooling dominated features over the East Asian continental areas, which varied in the approximate range of-0.5 to -2℃ with the maximum up to -3℃ in summer over the deserts of West China. The aerosols induced complicated variations of precipitation. Except in summer, the rainfall generally varied in the range of-1 to 1 mm d^-1 over most areas of China.