Radiative heat flux at wall boundaries is important for its thermal design.Numerical methods based on structured grids are becoming trendy due to their simplicity and efficiency.Existing radiative transfer equation so...Radiative heat flux at wall boundaries is important for its thermal design.Numerical methods based on structured grids are becoming trendy due to their simplicity and efficiency.Existing radiative transfer equation solvers produce oscillating radiative heat flux at the irregular boundary if they are based on structured grids.Reverse Monte Carlo method and analytical discrete ordinates method are adopted to calculate the radiative heat flux at complex boundaries.The results show that the reverse Monte Carlo method can generate a smooth radiative heat flux profile and it is smoother with larger energy bundles.The results from the analytical discrete ordinates method show that the fluctuations are due to the ray effect.For the total or the mean radiative heat flux,the results from the analytical discrete ordinates method are very close to those from the reverse Monte Carlo method.展开更多
The latitude-altitude distributions of radiative fluxes and heating rates are investigated by utilizing CloudSat satellite data over China during summer. The Tibetan Plateau causes the downward shortwave fluxes of the...The latitude-altitude distributions of radiative fluxes and heating rates are investigated by utilizing CloudSat satellite data over China during summer. The Tibetan Plateau causes the downward shortwave fluxes of the lower atmosphere over central China to be smaller than the fluxes over southern and northern China by generating more clouds. The existence of a larger quantity of clouds over central China reflects a greater amount of solar radiation back into space. The vertical gradients of upward shortwave radiative fluxes in the atmosphere below 8 km are greater than those above 8 km. The latitudinal-altitude distributions of downward longwave radiative fluxes show a slantwise decreasing trend from low latitudes to high latitudes that gradually weaken in the downward direction. The upward longwave radiative fluxes also weaken in the upward direction but with larger gradients. The maximum heating rates by solar radiation and cooling rates by longwave infrared radiation are located over 28 40°N at 7 8 km mean sea level (MSL), and they are larger than the rates in the northern and southern regions. The heating and cooling rates match well both vertically and geographically.展开更多
A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic(MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temp...A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic(MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temperature at the surface, a simple isothermal model of homogeneous-heterogeneous reactions is employed. The impact of nonlinear thermal radiative heat flux on thermal transport features is studied. The transformed nonlinear system of ordinary differential equations is solved numerically with an efficient method, namely, the Runge-Kutta-Felberg fourth-order and fifth-order(RKF45)integration scheme using the MAPLE software. Achieved results are validated with previous studies in an excellent way. Major outcomes reveal that the magnetic flux reduces the velocity components in the radial, angular, and axial directions, and enhances the fluid temperature. Also, the presence of radiative heat flux is to raise the temperature of fluid. Further, the strength of homogeneous-heterogeneous reactions is useful to diminish the concentration of reaction.展开更多
Four editions of the High Resolution Transmission (HITRAN) databases (HITRAN96, HITRAN2K, HITRAN04, and HITRAN08) are compared by using a line-by-line (LBL) radiative model in the long-wave calculation for six t...Four editions of the High Resolution Transmission (HITRAN) databases (HITRAN96, HITRAN2K, HITRAN04, and HITRAN08) are compared by using a line-by-line (LBL) radiative model in the long-wave calculation for six typical atmospheres. The results show that differences in downward radiative fluxes between HITRAN96 and HITRAN08 at the surface can reach a maximum of 1.70 W m-2 for tropical atmospheres. The largest difference in heating rate between HITRAN96 and HITRAN08 can reach 0.1 K day-1 for midlatitude summer atmosphere. Uncertainties caused by line intensity and air-broadened half- widths are also evaluated in this work using the uncertainty codes given in HITRAN08. The uncertainty is found to be 1.92 W m-2 for upward fluxes at the top of the atmosphere (TOA) and 1.97 W m-2 for downward fluxes at the surface. The largest heating rate caused by the uncertainty of line intensity and air-broadened hMf-width can reach 0.5 K day-1. The differences in optical depths between 1300 and 1700 cm-1 caused by different HITRAN versions are larger than those caused by the uncertainties in intensity and air-broadened half-width. This paper suggests that there is inaccurate representation of line parameters over some spectral ranges in HITRAN and more attention should be paid to these ranges in fields such as remote sensing.展开更多
基金Project supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology,the Anhui Provincial Natural Science Foundation,China(Grant No.2008085ME151)the National Natural Science Foundation of China(Grant Nos.51976057 and 51827808).
文摘Radiative heat flux at wall boundaries is important for its thermal design.Numerical methods based on structured grids are becoming trendy due to their simplicity and efficiency.Existing radiative transfer equation solvers produce oscillating radiative heat flux at the irregular boundary if they are based on structured grids.Reverse Monte Carlo method and analytical discrete ordinates method are adopted to calculate the radiative heat flux at complex boundaries.The results show that the reverse Monte Carlo method can generate a smooth radiative heat flux profile and it is smoother with larger energy bundles.The results from the analytical discrete ordinates method show that the fluctuations are due to the ray effect.For the total or the mean radiative heat flux,the results from the analytical discrete ordinates method are very close to those from the reverse Monte Carlo method.
基金supported by the National Natural Science Foundation of China(Grant Nos.40875084and40705012)the National Key Technologies R&D Program of China(Grant No.2008BAC40B00)
文摘The latitude-altitude distributions of radiative fluxes and heating rates are investigated by utilizing CloudSat satellite data over China during summer. The Tibetan Plateau causes the downward shortwave fluxes of the lower atmosphere over central China to be smaller than the fluxes over southern and northern China by generating more clouds. The existence of a larger quantity of clouds over central China reflects a greater amount of solar radiation back into space. The vertical gradients of upward shortwave radiative fluxes in the atmosphere below 8 km are greater than those above 8 km. The latitudinal-altitude distributions of downward longwave radiative fluxes show a slantwise decreasing trend from low latitudes to high latitudes that gradually weaken in the downward direction. The upward longwave radiative fluxes also weaken in the upward direction but with larger gradients. The maximum heating rates by solar radiation and cooling rates by longwave infrared radiation are located over 28 40°N at 7 8 km mean sea level (MSL), and they are larger than the rates in the northern and southern regions. The heating and cooling rates match well both vertically and geographically.
文摘A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic(MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temperature at the surface, a simple isothermal model of homogeneous-heterogeneous reactions is employed. The impact of nonlinear thermal radiative heat flux on thermal transport features is studied. The transformed nonlinear system of ordinary differential equations is solved numerically with an efficient method, namely, the Runge-Kutta-Felberg fourth-order and fifth-order(RKF45)integration scheme using the MAPLE software. Achieved results are validated with previous studies in an excellent way. Major outcomes reveal that the magnetic flux reduces the velocity components in the radial, angular, and axial directions, and enhances the fluid temperature. Also, the presence of radiative heat flux is to raise the temperature of fluid. Further, the strength of homogeneous-heterogeneous reactions is useful to diminish the concentration of reaction.
基金Support Program of China (2007BAC03A01)National Natural Science Foundation of China (41075056)National Basic Research and Development (973) Program of China (2011CB403405)
文摘Four editions of the High Resolution Transmission (HITRAN) databases (HITRAN96, HITRAN2K, HITRAN04, and HITRAN08) are compared by using a line-by-line (LBL) radiative model in the long-wave calculation for six typical atmospheres. The results show that differences in downward radiative fluxes between HITRAN96 and HITRAN08 at the surface can reach a maximum of 1.70 W m-2 for tropical atmospheres. The largest difference in heating rate between HITRAN96 and HITRAN08 can reach 0.1 K day-1 for midlatitude summer atmosphere. Uncertainties caused by line intensity and air-broadened half- widths are also evaluated in this work using the uncertainty codes given in HITRAN08. The uncertainty is found to be 1.92 W m-2 for upward fluxes at the top of the atmosphere (TOA) and 1.97 W m-2 for downward fluxes at the surface. The largest heating rate caused by the uncertainty of line intensity and air-broadened hMf-width can reach 0.5 K day-1. The differences in optical depths between 1300 and 1700 cm-1 caused by different HITRAN versions are larger than those caused by the uncertainties in intensity and air-broadened half-width. This paper suggests that there is inaccurate representation of line parameters over some spectral ranges in HITRAN and more attention should be paid to these ranges in fields such as remote sensing.