期刊文献+
共找到253篇文章
< 1 2 13 >
每页显示 20 50 100
Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network 被引量:2
1
作者 YANG Xiao-hua HUANG Jing-feng +2 位作者 WANG Jian-wen WANG Xiu-zhen LIU Zhan-yu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期883-895,共13页
Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices ... Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs. 展开更多
关键词 artificial neural network (ANN) Radial basis function (RBF) Remote sensing RICE Vegetation index (VI)
下载PDF
Development of Trees Management System Using Radial Basis Function Neural Network for Rain Forecast 被引量:1
2
作者 Hasnul Auzani Khairusy Syakirin Has-Yun Farah Aniza Mohd Nazri 《Computational Water, Energy, and Environmental Engineering》 2022年第1期1-10,共10页
Agriculture and farming are mainly dependent on weather especially in Malaysia as it received heavy rainfall throughout the years. An efficient crop or tree management system with a weather forecast needed for suitabl... Agriculture and farming are mainly dependent on weather especially in Malaysia as it received heavy rainfall throughout the years. An efficient crop or tree management system with a weather forecast needed for suitable planning of farming operation. Radial Basis Function Neural Network (RBFNN) algorithm was used in this study to predict rainfall and the main focus of this study is to analyze the factor that affect</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the performance of neural model. This study found that the model works better the more hidden nodes and the optimum learning rate is 0.01 with the RMSE 49% and the percentage accuracy is 57%. Besides that, it is found that the meteorology data also affect the model performance. Future research can be conducted to improve the rainfall forecast of this study and improv</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the tree management system. 展开更多
关键词 Tree Management Radial basis function Rain Prediction artificial neural network
下载PDF
Recovery of saturated signal waveform acquired from high-energy particles with artificial neural networks 被引量:4
3
作者 Yu Liu Jing-Jun Zhu +5 位作者 Neil Roberts Ke-Ming Chen Yu-Lu Yan Shuang-Rong Mo Peng Gu Hao-Yang Xing 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期30-39,共10页
Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi... Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics. 展开更多
关键词 Saturated signals artificial neural networks(ANNs) RECOVERY of signal waveform Generalized radial basis function Backpropagation neural netWORK ELMAN neural netWORK
下载PDF
Calculation method of ship collision force on bridge using artificial neural network 被引量:4
4
作者 Wei FAN Wan-cheng YUAN Qi-wu FAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第5期614-623,共10页
Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent st... Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent static load, or the use of finite element method (FEM) which is more time-consuming and requires supercomputing resources. In this paper, we proposed an alternative approach that combines FEM with artificial neural network (ANN). The radial basis function neural network (RBFNN) employed for calculating the impact force in consideration of ship-bridge collision mechanics. With ship velocity and mass as the input vectors and ship collision force as the output vector, the neural networks for different network parameters are trained by the learning samples obtained from finite element simulation results. The error analyses of the learning and testing samples show that the proposed RBFNN is accurate enough to calculate ship-bridge collision force. The input-output relationship obtained by the RBFNN is essentially consistent with the typical empirical formulae. Finally, a special toolbox is developed for calculation efficiency in application using MATLAB software. 展开更多
关键词 Ship-bridge collision force Finite element method (FEM) artificial neural network (ANN) Radial basis function neural network (RBFNN)
下载PDF
A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak 被引量:10
5
作者 A.Sayadi M.Monjezi +1 位作者 N.Talebi Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期318-324,共7页
In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and... In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome.Since many parameters affect the blasting results in a complicated mechanism,employment of robust methods such as artificial neural network may be very useful.In this regard,this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran.Back propagation neural network(BPNN) and radial basis function neural network(RBFNN) are adopted for the simulation.Also,regression analysis is performed between independent and dependent variables.For the BPNN modeling,a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN,architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude.Performance comparison of the developed models is fulfilled using value account for(VAF),root mean square error(RMSE),determination coefficient(R2) and maximum relative error(MRE).As such,it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error.Also,sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak,respectively.On the other hand,for both of the outputs,specific charge is the least effective parameter. 展开更多
关键词 Rock fragmentation Backbreak artificial neural network Back propagation Radial basis function
下载PDF
Signal prediction based on empirical mode decomposition and artificial neural networks 被引量:1
6
作者 Wang Yong Liu Yanping Yang Jing 《Geodesy and Geodynamics》 2012年第1期52-56,共5页
In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way o... In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone. 展开更多
关键词 EMD (Empirical Mode Decomposition) ANN artificial neural networks) MRME (Most Relevant Matching Extension) IMF (Intrinsic Mode function endpoint problem RBF (Radial basis function
下载PDF
Prediction of Salinity Variations in a Tidal Estuary Using Artificial Neural Network and Three-Dimensional Hydrodynamic Models
7
作者 Weibo Chen Wencheng Liu +1 位作者 Weiche Huang Hongming Liu 《Computational Water, Energy, and Environmental Engineering》 2017年第1期107-128,共22页
The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series ... The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system. 展开更多
关键词 SALINITY Variation artificial neural netWORK Backpropagation Algorithm Radial basis function neural netWORK THREE-DIMENSIONAL Hydrodynamic Model TIDAL ESTUARY
下载PDF
Sensitivity Analysis of Radial Basis Function Networks for River Stage Forecasting
8
作者 Christian Walker Dawson 《Journal of Software Engineering and Applications》 2020年第12期327-347,共21页
<div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addr... <div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addressing the criticisms of their black-box behaviour. Such analysis of RBFNs for hydrological modelling has previously been limited to exploring perturbations to both inputs and connecting weights. In this paper, the backward chaining rule that has been used for sensitivity analysis of MLPs, is applied to RBFNs and it is shown how such analysis can provide insight into physical relationships. A trigonometric example is first presented to show the effectiveness and accuracy of this approach for first order derivatives alongside a comparison of the results with an equivalent MLP. The paper presents a real-world application in the modelling of river stage shows the importance of such approaches helping to justify and select such models.</span> </div> 展开更多
关键词 artificial neural networks Backward Chaining Multi-Layer Perceptron Partial Derivative Radial basis function Sensitivity Analysis River Stage Forecasting
下载PDF
Catalytic Cracking and PSO-RBF Neural Network Model of FCC Cycle Oil 被引量:3
9
作者 Liu Yibin Tu Yongshan +1 位作者 Li Chunyi Yang Chaohe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第4期63-69,共7页
Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were in... Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions. 展开更多
关键词 catalytic cracking cycle oil radical basis function neural network particle swarm optimization
下载PDF
Simulation and prediction of monthly accumulated runoff,based on several neural network models under poor data availability 被引量:1
10
作者 JianPing Qian JianPing Zhao +2 位作者 Yi Liu XinLong Feng DongWei Gui 《Research in Cold and Arid Regions》 CSCD 2018年第6期468-481,共14页
Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multila... Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multilayer perceptron artificial neural network(ANN). However, in runoff areas with relatively low rainfall or a dry climate, more studies are needed. In these areas—of which oasis-plain areas are a particularly good example—the existence and development of runoff depends largely on that which is generated from alpine regions. Quantitative analysis of the uncertainty of runoff simulation under climate change is the key to improving the utilization and management of water resources in arid areas. Therefore, in this context, three kinds of BP feed-forward, three-layer ANNs with similar structure were chosen as models in this paper.Taking the oasis–plain region traverse by the Qira River Basin in Xinjiang, China, as the research area, the monthly accumulated runoff of the Qira River in the next month was simulated and predicted. The results showed that the training precision of a compact wavelet neural network is low; but from the forecasting results, it could be concluded that the training algorithm can better reflect the whole law of samples. The traditional artificial neural network(TANN) model and radial basis-function neural network(RBFNN) model showed higher accuracy in the training and prediction stage. However, the TANN model, more sensitive to the selection of input variables, requires a large number of numerical simulations to determine the appropriate input variables and the number of hidden-layer neurons. Hence, The RBFNN model is more suitable for the study of such problems. And it can be extended to other similar research arid-oasis areas on the southern edge of the Kunlun Mountains and provides a reference for sustainable water-resource management of arid-oasis areas. 展开更多
关键词 OASIS artificial neural network radial basis function wavelet function runoff simulation
下载PDF
Hybrid Loader Automatic Shift Strategy Based on Neural Network
11
作者 潘鑫 闫伟 +1 位作者 陈玉鸿 李国祥 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期515-519,527,共6页
Hybrid loader 's comprehensive performance mainly depends on the performance of hydraulic torque converter during its driving and working. Hybrid loader and hydraulic torque converter are taken for the research ob... Hybrid loader 's comprehensive performance mainly depends on the performance of hydraulic torque converter during its driving and working. Hybrid loader and hydraulic torque converter are taken for the research objects. The primary characteristic curve of hydraulic torque converter and the traction curve of hybrid loader are acquired by analyzing the characteristic parameters of hydraulic torque converter, the characteristic parameters of engine, the characteristic parameters of battery pack and geometric parameters of hybrid loader. The gear shift curves based on the best energy saving performance and the best power performance are acquired respectively with the opening of throttle,the speed of pump wheel and the speed of turbine as parameters. Then the two curves are combined to get the comprehensive gear shift curve. Radical basis function( RBF) neural network is applied to building the gear shift strategy to keep hybrid loader with the best power performance and energy saving performance. The experimental bench is set up for experimental verification. It proves that both of the power performance and energy saving performance of hybrid loader are improved effectively by using the automatic shift strategy. 展开更多
关键词 loader torque converter wheel driving hydraulic battery saving bench verification
下载PDF
基于机器学习预测环氧树脂复合材料抗冲击性能
12
作者 伍宝华 关留祥 方秀苇 《塑料工业》 CAS CSCD 北大核心 2024年第10期119-125,143,共8页
剩余压缩强度(RCS)是评价复合材料受到冲击损伤后力学性能的重要指标。采用声发射技术(AE)对玻璃纤维增强环氧树脂复合材料冲击载荷进行了在线监测,分析了振铃计数、峰值计数、信号强度和信号均方根值4种冲击载荷参数,采用人工神经元网... 剩余压缩强度(RCS)是评价复合材料受到冲击损伤后力学性能的重要指标。采用声发射技术(AE)对玻璃纤维增强环氧树脂复合材料冲击载荷进行了在线监测,分析了振铃计数、峰值计数、信号强度和信号均方根值4种冲击载荷参数,采用人工神经元网络(ANN)和径向基网络(RBF)基于冲击载荷参数预测了试件RCS。结果表明,高冲击能量造成了试件分层、玻璃纤维断裂、环氧树脂基体开裂、纤维脱黏,当冲击能量为10、15、20和30 J时,冲击3 ms后冲击能量达到最大值,分别为10.53、16.67、21.77和27.13 J,随后冲击能量不断下降。随着冲击能量的增加,试件冲击深度从0.18 mm增加到3.35 mm,RCS从56.87 MPa降低到20.45 MPa。最优ANN模型结构为4-48-1,预测和实验RCS的均方误差(MSE)最低为0.03 MPa,最优RBF模型结构为4-21-1,MSE最低为0.01。RBF模型的局部响应特性使得其对输入数据中的噪声具有较好的鲁棒性,预测与实验RCS数据的相关系数(R2)为0.9863,而ANN模型预测结果为0.9514。 展开更多
关键词 径向基网络 人工神经元网络 环氧树脂复合材料 声发射 剩余压缩强度
下载PDF
基于人工智能技术的机器人运动控制系统设计
13
作者 李艳红 《现代电子技术》 北大核心 2024年第10期117-122,共6页
设计一种基于人工智能技术的机器人运动控制系统,确保机器人更好地理解人类的意图,并提供更加人性化的服务。该系统通过运动数据采集与传输组件连接机器人的轴电机,采集机器人当前运动数据后,将其传输到控制器组件内,控制器组件依托X86... 设计一种基于人工智能技术的机器人运动控制系统,确保机器人更好地理解人类的意图,并提供更加人性化的服务。该系统通过运动数据采集与传输组件连接机器人的轴电机,采集机器人当前运动数据后,将其传输到控制器组件内,控制器组件依托X86架构工控机,使用PIC总线将采集到的机器人当前运动数据发送到基于人工智能技术的机器人运动路径规划模块内。该模块运用人工智能技术中的A*算法获取机器人轨迹路径规划结果后,依据该路径规划结果,将人工智能技术中的神经网络和模糊B样条基函数相结合,建立模糊B样条基函数神经网络控制器。该控制器输出机器人运动控制指令,并发送给伺服驱动器组件,伺服驱动器负责驱动机器人轴电机,控制机器人运动。实验结果表明:所设计系统具备较强的机器人路径规划能力,可在复杂路径情况下实现机器人运动控制,且控制精度和控制阶跃响应能力均较强。 展开更多
关键词 人工智能 机器人 运动控制系统 模糊B样条基函数 神经网络 路径规划
下载PDF
基于RBF神经网络整定PID的电液比例系统位置控制研究
14
作者 陈翰文 徐巧玉 +1 位作者 徐恺 张正 《机电工程》 CAS 北大核心 2024年第3期371-381,共11页
针对凿岩机械臂的电液比例系统位置控制精度问题,提出了一种基于径向基函数(RBF)神经网络整定PID的电液比例系统位置控制方法。首先,在AMESim中搭建了阀控非对称液压缸的电液比例系统简化模型,设置了各个模块的参数;然后,利用MATLAB/Sim... 针对凿岩机械臂的电液比例系统位置控制精度问题,提出了一种基于径向基函数(RBF)神经网络整定PID的电液比例系统位置控制方法。首先,在AMESim中搭建了阀控非对称液压缸的电液比例系统简化模型,设置了各个模块的参数;然后,利用MATLAB/Simulink搭建了系统闭环控制模型,通过不断更新RBF网络模型并修正PID参数,实现了基于RBF神经网络整定PID的电液比例系统位置控制目的;结合AMESim搭建的电液比例系统模型和Simulink下搭建的控制器进行了联合仿真;最后,基于凿岩台车机械臂实验平台,进行了电液比例系统位置控制实验。仿真结果表明:在受到外部干扰的情况下,RBF神经网络整定PID控制系统能够在0.3 s内控制活塞杆重新运行至目标位置,平均响应时间为1.5 s,位置精度误差不超过5 mm。实验结果表明:与常规PID控制方法相比,RBF神经网络整定PID控制活塞杆位置精度误差降低了75%,位置精度误差在工程实际要求的10 mm范围以内,因此,RBF神经网络整定PID算法可以有效提高电液比例系统的位置控制精度,满足凿岩机械臂实际工作中对电液比例系统位置精度的控制要求。 展开更多
关键词 凿岩机械臂 径向基函数神经网络整定PID 电液比例系统位置控制精度 联合仿真 MATLAB/SIMULINK AMESIM
下载PDF
基于神经网络滑模的欠驱动船舶路径跟踪与避障协同控制
15
作者 田宇 刘志全 高妍南 《广东海洋大学学报》 CAS CSCD 北大核心 2024年第5期144-152,共9页
【目的】针对存在模型不确定性和外界环境干扰的欠驱动船舶路径跟踪与避障问题,结合反演法与径向基函数(RBF)神经网络技术,提出一种神经网络滑模自适应控制律和改进的人工势场。【方法】首先根据误差方程设计辅助纵荡速度和艏摇角,然后... 【目的】针对存在模型不确定性和外界环境干扰的欠驱动船舶路径跟踪与避障问题,结合反演法与径向基函数(RBF)神经网络技术,提出一种神经网络滑模自适应控制律和改进的人工势场。【方法】首先根据误差方程设计辅助纵荡速度和艏摇角,然后分别对控制输入设计滑模面,并利用RBF神经网络逼近总未知项,设计控制律和自适应律。【结果与结论】Lyapunov稳定性分析证明闭环系统误差是一致最终有界的。对静态、动态障碍物分别改进人工势场,克服局部极小值问题以及未考虑船舶和障碍物的位置、相对速度关系问题。仿真对比结果表明,在海浪干扰下船舶路径跟踪误差收敛精度更高,且避障更安全。所提控制方法可改善路径跟踪与避障控制效果,验证了所提控制算法的有效性和鲁棒性。 展开更多
关键词 欠驱动船舶 路径跟踪 避障 反演法 径向基函数神经网络 滑模 人工势场法
下载PDF
Measurement-based Frequency Dynamic Response Estimation Using Geometric Template Matching and Recurrent Artificial Neural Network 被引量:8
16
作者 Feifei Bai Xiaoru Wang +3 位作者 Yilu Liu Xinyu Liu Yue Xiang Yong Liu 《CSEE Journal of Power and Energy Systems》 SCIE 2016年第3期10-18,共9页
Understanding power system dynamics after an event occurs is essential for the purpose of online stability assessment and control applications.Wide area measurement systems(WAMS)based on synchrophasors make power syst... Understanding power system dynamics after an event occurs is essential for the purpose of online stability assessment and control applications.Wide area measurement systems(WAMS)based on synchrophasors make power system dynamics visible to system operators,delivering an accurate picture of overall operating conditions.However,in actual field implementations,some measurements can be inaccessible for various reasons,e.g.,most notably communication failure.To reconstruct these inaccessible measurements,in this paper,the radial basis function artificial neural network(RBF-ANN)is used to estimate the system dynamics.In order to find the best input features of the RBF-ANN model,geometric template matching(GeTeM)and quality-threshold(QT)clustering are employed from the time series analysis to compute the similarity of frequency dynamic responses in different locations of the power system.The proposed method is tested and verified on the Eastern Interconnection(EI)transmission system in the United States.The results obtained indicate that the proposed approach provides a compact and efficient RBF-ANN model that accurately estimates the inaccessible frequency dynamic responses under different operating conditions and with fewer inputs. 展开更多
关键词 artificial neural network CLUSTERING dynamic response estimation geometric template matching radial basis function
原文传递
RBF-Type Artificial Neural Network Model Applied in Alloy Design of Steels 被引量:4
17
作者 YOU Wei LIU Ya-xiu +1 位作者 BAI Bing-zhe FANG Hong-sheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第2期87-90,共4页
RBF model,a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels.The errors of the ANN model are:MSE 0.052 1,MSRE 17.85%,and VOF 1.932 9.The result... RBF model,a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels.The errors of the ANN model are:MSE 0.052 1,MSRE 17.85%,and VOF 1.932 9.The results obtained are satisfactory.The method is a powerful aid for designing new steels. 展开更多
关键词 radial-basis-function artificial neural network carbon alloy design neurobalance
原文传递
基于RBF神经网络分位数回归的电力负荷概率密度预测方法 被引量:100
18
作者 何耀耀 许启发 +1 位作者 杨善林 余本功 《中国电机工程学报》 EI CSCD 北大核心 2013年第1期93-98,共6页
针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负... 针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负荷完整概率分布的预测。中国某市实际数据的预测结果表明,提出的概率密度预测方法不仅能得出较为精确的点预测结果,而且能够获得短期负荷完整的概率密度函数预测结果。 展开更多
关键词 负荷预测 径向基函数 神经网络 分位数回归 概率密度函数
下载PDF
基于RBF神经网络的种猪体重预测 被引量:31
19
作者 刘同海 李卓 +1 位作者 滕光辉 罗城 《农业机械学报》 EI CAS CSCD 北大核心 2013年第8期245-249,共5页
针对猪体生长参数之间具有一定的自相关性、部分参数与体重间呈非线性关系、通过线性回归模型预测猪体体重存在着自变量间共线性及拟合优度较低等问题,以52头长白母猪的生长参数为基础,通过最近邻聚类算法,构建了基于RBF神经网络的种猪... 针对猪体生长参数之间具有一定的自相关性、部分参数与体重间呈非线性关系、通过线性回归模型预测猪体体重存在着自变量间共线性及拟合优度较低等问题,以52头长白母猪的生长参数为基础,通过最近邻聚类算法,构建了基于RBF神经网络的种猪体重预测模型。通过线性回归检验法对种猪体重预测值与实测值进行分析,发现基于RBF神经网络的长白种猪体重预测模型的拟合优度R2为0.998,而线性回归模型的R2为0.891。结果表明:通过RBF神经网络方法建模,消除了线性回归分析中自变量的共线性问题,预测效果优于线性回归模型。 展开更多
关键词 种猪体重 径向基函数 神经网络 回归分析 预测
下载PDF
径向基函数神经网络在大坝安全监测数据处理中的应用 被引量:22
20
作者 张晓春 徐晖 +1 位作者 邓念武 陈仁喜 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2003年第2期33-36,共4页
建立了大坝安全监测数据处理坝段挠度预测的径向基神经网络模型 ,与通常的BP神经网络模型进行对比 ,并与实测结果进行校核 .结果表明 ,对于所研究的问题 ,径向基函数网络避免了BP网络的局部极小及收敛速度慢等缺点 ,在精度。
关键词 径向基 人工神经网络 大坝安全监测
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部