The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, a...Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.展开更多
This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integ...This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals.展开更多
A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of ...A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of the interior points very close to boundary were categorized into two forms. The factor leading to the singularity was transformed out of the integral representations with integration by parts, so non-singular regularized formulas were presented for the two forms of integrals. Furthermore, quadratic elements are used in addition to linear ones. The quadratic element very close to the internal point can be divided into two linear ones, so that the algorithm is still valid. Numerical examples demonstrate the effectiveness and accuracy of this algorithm. Especially for problems with curved boundaries, the combination of quadratic elements and linear elements can give more accurate results.展开更多
A radial integral boundary element method(BEM)is used to simulate the phase change problem with a mushy zone in this paper.Three phases,including the solid phase,the liquid phase,and the mushy zone,are considered in t...A radial integral boundary element method(BEM)is used to simulate the phase change problem with a mushy zone in this paper.Three phases,including the solid phase,the liquid phase,and the mushy zone,are considered in the phase change problem.First,according to the continuity conditions of temperature and its gradient on the liquid-mushy interface,the mushy zone and the liquid phase in the simulation can be considered as a whole part,namely,the non-solid phase,and the change of latent heat is approximated by heat source which is dependent on temperature.Then,the precise integration BEM is used to obtain the differential equations in the solid phase zone and the non-solid phase zone,respectively.Moreover,an iterative predictor-corrector precise integration method(PIM)is needed to solve the differential equations and obtain the temperature field and the heat flux on the boundary.According to an energy balance equation and the velocity of the interface between the solid phase and the mushy zone,the front-tracking method is used to track the move of the interface.The interface between the liquid phase and the mushy zone is obtained by interpolation of the temperature field.Finally,four numerical examples are provided to assess the performance of the proposed numerical method.展开更多
A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten...A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.展开更多
This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structu...This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.展开更多
With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation o...With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method. Based on the conversion, the hypersingularity in the boundary integrals could be lowered by one order, resulting in the simplification of the computer code. Moreover, an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case. The approach is simple to use, which can be inserted readily to computer code, thus getting rid of the dull routine deduction of formulae before the numerical implementations, as the expressions of these kernels are in general complicated. The numerical examples were given in three dimensional elasticity, verifying the effectiveness of the proposed approach, which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.展开更多
The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealin...The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.展开更多
By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is exp...By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.展开更多
This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven appro...This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.展开更多
Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a co...Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a composite coarse-fine grid or as a global fine grid.One cheaper way of obtaining the composite grid solution is the use of the local defect correction technique.The technique is an algorithm that combines a global coarse grid solution and a local fine grid solution in an iterative way to estimate the solution on the corresponding composite grid.The algorithm is relatively new and its convergence properties have not been studied for the boundary element method.In this paper the objective is to determine convergence properties of the algorithm for the boundary element method.First,we formulate the algorithm as a fixed point iterative scheme,which has also not been done before for the boundary element method,and then study the properties of the iteration matrix.Results show that we can always expect convergence.Therefore,the algorithm opens up a real alternative for application in the boundary element method for problems with localised regions of high activity.展开更多
The present work couples isogeometric analysis(IGA)and boundary element methods(BEM)for three dimensional steady heat conduction problems with variable coefficients.The Computer-Aided Design(CAD)geometries are built b...The present work couples isogeometric analysis(IGA)and boundary element methods(BEM)for three dimensional steady heat conduction problems with variable coefficients.The Computer-Aided Design(CAD)geometries are built by subdivision surfaces,and meantime the basis functions of subdivision surfaces are employed to discretize the boundary integral equations for heat conduction analysis.Moreover,the radial integration method is adopted to transform the additional domain integrals caused by variable coefficients to the boundary integrals.Several numerical examples are provided to demonstrate the correctness and advantages of the proposed algorithm in the integration of CAD and numerical analysis.展开更多
Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq...Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.展开更多
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The...A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.展开更多
Stemming from the definition of the Cauchy principal values (CPV) integrals, a newly developed symmetrical quadrature scheme was proposed in the paper for the accurate numerical evaluation of the singular boundary int...Stemming from the definition of the Cauchy principal values (CPV) integrals, a newly developed symmetrical quadrature scheme was proposed in the paper for the accurate numerical evaluation of the singular boundary integrals in the sense of CPV encountered in the boundary element method. In the case of inner element singularities, the CPV integrals could be evaluated in a straightforward way by dividing the element into the symmetrical part and the remainder(s). And in the case of end singularities, the CPV integrals could be evaluated simply by taking a tangential distance transformation of the integrand after cutting out a symmetrical tiny zone around the singular point. In both cases, the operations are no longer necessary before the numerical implementation, which involves the dull routine work to separate out singularities from the integral kernels. Numerical examples were presented for both the two and the three dimensional boundary integrals in elasticity. Comparing the numerical results with those by other approaches demonstrates the feasibility and the effectiveness of the proposed scheme.展开更多
The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displaceme...The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displacement solutions in a traction boundary value problem. The condition for the existence of unique displacement solutions is proposed for the traction boundary value problem. The degrees of freedom of the displacement solution are removed by the condition to obtain the boundary integral equations of unique solutions for the traction boundary value problems. Numerical example is presented to demonstrate the accuracy and efficiency of the present equations.展开更多
In this paper, the nonsingular fundamental solutions were obtained from Fourier series under some given conditions. These solutions can be taken as the kernels of integral equation. So a new boundary element method wa...In this paper, the nonsingular fundamental solutions were obtained from Fourier series under some given conditions. These solutions can be taken as the kernels of integral equation. So a new boundary element method was presented, with which all kinds of thin-plate bending problems can be solved, even with complicated loadings and sinuous boundaries. The calculation is much simpler and more accurate.展开更多
The isogeometric boundary element technique(IGABEM)is presented in this study for steady-state inhomogeneous heat conduction analysis.The physical unknowns in the boundary integral formulations of the governing equati...The isogeometric boundary element technique(IGABEM)is presented in this study for steady-state inhomogeneous heat conduction analysis.The physical unknowns in the boundary integral formulations of the governing equations are discretized using non-uniform rational B-spline(NURBS)basis functions,which are utilized to build the geometry of the structures.To speed up the assessment of NURBS basis functions,the Bezier extraction´approach is used.To solve the extra domain integrals,we use a radial integration approach.The numerical examples show the potential of IGABEM for dimension reduction and smooth integration of CAD and numerical analysis.展开更多
This work presents some numerical aspects of isogeometric boundary element methods(IGABEM).The behavior of hyper-singular and nearly-singular integration is first explored on the distorted NURBS surface.Several numeri...This work presents some numerical aspects of isogeometric boundary element methods(IGABEM).The behavior of hyper-singular and nearly-singular integration is first explored on the distorted NURBS surface.Several numerical treatments are proposed to enhance the quadrature in the framework of isogeometric analysis.Then a numerical implementation of IGABEM on the trimmed NURBS is detailed.Based on this idea,the surface crack problem is modeled incorporation with the phantom element method.The proposed method allows the crack to intersect with the boundary of the body while preserving the original parametrization of the NURBS-based CAD geometry.展开更多
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
文摘Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.
基金The project supported by National Natural Science Foundation of China(9713008)Zhejiang Natural Science Foundation Special Funds No. RC.9601
文摘This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals.
文摘A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of the interior points very close to boundary were categorized into two forms. The factor leading to the singularity was transformed out of the integral representations with integration by parts, so non-singular regularized formulas were presented for the two forms of integrals. Furthermore, quadratic elements are used in addition to linear ones. The quadratic element very close to the internal point can be divided into two linear ones, so that the algorithm is still valid. Numerical examples demonstrate the effectiveness and accuracy of this algorithm. Especially for problems with curved boundaries, the combination of quadratic elements and linear elements can give more accurate results.
基金the National Natural Science Foundation of China(No.11672064)。
文摘A radial integral boundary element method(BEM)is used to simulate the phase change problem with a mushy zone in this paper.Three phases,including the solid phase,the liquid phase,and the mushy zone,are considered in the phase change problem.First,according to the continuity conditions of temperature and its gradient on the liquid-mushy interface,the mushy zone and the liquid phase in the simulation can be considered as a whole part,namely,the non-solid phase,and the change of latent heat is approximated by heat source which is dependent on temperature.Then,the precise integration BEM is used to obtain the differential equations in the solid phase zone and the non-solid phase zone,respectively.Moreover,an iterative predictor-corrector precise integration method(PIM)is needed to solve the differential equations and obtain the temperature field and the heat flux on the boundary.According to an energy balance equation and the velocity of the interface between the solid phase and the mushy zone,the front-tracking method is used to track the move of the interface.The interface between the liquid phase and the mushy zone is obtained by interpolation of the temperature field.Finally,four numerical examples are provided to assess the performance of the proposed numerical method.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52271276,52271319,and 52201364)the Natural Science Foundation of Jiangsu Province (Grant No.BK20201006)。
文摘A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.
基金funded by National Natural Science Foundation of China(NSFC)under Grant Nos.11702238,51904202,and 11902212Nanhu Scholars Program for Young Scholars of XYNU.
文摘This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.
文摘With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method. Based on the conversion, the hypersingularity in the boundary integrals could be lowered by one order, resulting in the simplification of the computer code. Moreover, an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case. The approach is simple to use, which can be inserted readily to computer code, thus getting rid of the dull routine deduction of formulae before the numerical implementations, as the expressions of these kernels are in general complicated. The numerical examples were given in three dimensional elasticity, verifying the effectiveness of the proposed approach, which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.
文摘The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.
文摘By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.
文摘This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.
文摘Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a composite coarse-fine grid or as a global fine grid.One cheaper way of obtaining the composite grid solution is the use of the local defect correction technique.The technique is an algorithm that combines a global coarse grid solution and a local fine grid solution in an iterative way to estimate the solution on the corresponding composite grid.The algorithm is relatively new and its convergence properties have not been studied for the boundary element method.In this paper the objective is to determine convergence properties of the algorithm for the boundary element method.First,we formulate the algorithm as a fixed point iterative scheme,which has also not been done before for the boundary element method,and then study the properties of the iteration matrix.Results show that we can always expect convergence.Therefore,the algorithm opens up a real alternative for application in the boundary element method for problems with localised regions of high activity.
文摘The present work couples isogeometric analysis(IGA)and boundary element methods(BEM)for three dimensional steady heat conduction problems with variable coefficients.The Computer-Aided Design(CAD)geometries are built by subdivision surfaces,and meantime the basis functions of subdivision surfaces are employed to discretize the boundary integral equations for heat conduction analysis.Moreover,the radial integration method is adopted to transform the additional domain integrals caused by variable coefficients to the boundary integrals.Several numerical examples are provided to demonstrate the correctness and advantages of the proposed algorithm in the integration of CAD and numerical analysis.
文摘Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.
基金Project supported by the National Natural Science Foundation of China (No.10772106)
文摘A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.
文摘Stemming from the definition of the Cauchy principal values (CPV) integrals, a newly developed symmetrical quadrature scheme was proposed in the paper for the accurate numerical evaluation of the singular boundary integrals in the sense of CPV encountered in the boundary element method. In the case of inner element singularities, the CPV integrals could be evaluated in a straightforward way by dividing the element into the symmetrical part and the remainder(s). And in the case of end singularities, the CPV integrals could be evaluated simply by taking a tangential distance transformation of the integrand after cutting out a symmetrical tiny zone around the singular point. In both cases, the operations are no longer necessary before the numerical implementation, which involves the dull routine work to separate out singularities from the integral kernels. Numerical examples were presented for both the two and the three dimensional boundary integrals in elasticity. Comparing the numerical results with those by other approaches demonstrates the feasibility and the effectiveness of the proposed scheme.
文摘The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displacement solutions in a traction boundary value problem. The condition for the existence of unique displacement solutions is proposed for the traction boundary value problem. The degrees of freedom of the displacement solution are removed by the condition to obtain the boundary integral equations of unique solutions for the traction boundary value problems. Numerical example is presented to demonstrate the accuracy and efficiency of the present equations.
基金Project supported by the National Natural Science Foundation of China
文摘In this paper, the nonsingular fundamental solutions were obtained from Fourier series under some given conditions. These solutions can be taken as the kernels of integral equation. So a new boundary element method was presented, with which all kinds of thin-plate bending problems can be solved, even with complicated loadings and sinuous boundaries. The calculation is much simpler and more accurate.
基金supported by Key Scientific Research Projects of Universities and Key Scientific and Technological Projects in Henan Province,which numbers are 21A440015,22A570007 and 212102310601,respectively.
文摘The isogeometric boundary element technique(IGABEM)is presented in this study for steady-state inhomogeneous heat conduction analysis.The physical unknowns in the boundary integral formulations of the governing equations are discretized using non-uniform rational B-spline(NURBS)basis functions,which are utilized to build the geometry of the structures.To speed up the assessment of NURBS basis functions,the Bezier extraction´approach is used.To solve the extra domain integrals,we use a radial integration approach.The numerical examples show the potential of IGABEM for dimension reduction and smooth integration of CAD and numerical analysis.
基金National Natural Science Foundation of China(NSFC)under Grant(No.51904202).
文摘This work presents some numerical aspects of isogeometric boundary element methods(IGABEM).The behavior of hyper-singular and nearly-singular integration is first explored on the distorted NURBS surface.Several numerical treatments are proposed to enhance the quadrature in the framework of isogeometric analysis.Then a numerical implementation of IGABEM on the trimmed NURBS is detailed.Based on this idea,the surface crack problem is modeled incorporation with the phantom element method.The proposed method allows the crack to intersect with the boundary of the body while preserving the original parametrization of the NURBS-based CAD geometry.