This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects ...This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects due to buildings, with variation of the elevation angle of the satellite. The wideband parameters (coherent bandwidth and time delay spreading) for LMS channel, in residential and urban environments, are computed. These parameters can be considered as a measure of the amount of ISI (inter-symbol interference) of the radio channel, which distorts the received signal and accordingly increases the bit error rate. The calculated values for these parameters using our model, show very good agreement with the corresponding measured ones, which accordingly shows the validity of the developed model for radio channel design in satellite mobile communication systems.展开更多
A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of o...A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering.展开更多
文摘This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects due to buildings, with variation of the elevation angle of the satellite. The wideband parameters (coherent bandwidth and time delay spreading) for LMS channel, in residential and urban environments, are computed. These parameters can be considered as a measure of the amount of ISI (inter-symbol interference) of the radio channel, which distorts the received signal and accordingly increases the bit error rate. The calculated values for these parameters using our model, show very good agreement with the corresponding measured ones, which accordingly shows the validity of the developed model for radio channel design in satellite mobile communication systems.
基金Supported by National Natural Science Foundation of China (No. 60972038)The Open Research Fund of Na-tional Mobile Communications Research Laboratory, Southeast University (N200911)+3 种基金The Jiangsu Province Universities Natural Science Research Key Grant Project (No. 07KJA51006)ZTE Communications Co., Ltd. (Shenzhen) Huawei Technology Co., Ltd. (Shenzhen)The Research Fund of Nanjing College of Traffic Voca-tional Technology (JY0903)
文摘A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering.