SSC-Linac RFQ(Separated Sector Cyclotron Linac Radio Frequency Quadrupolec)是中国科学院近代物理研究所和北京大学共同研制的国内首台高电荷态强流重离子连续波四杆型加速器,机械加工的高精度是RFQ能否顺利出束的关键步骤之一。...SSC-Linac RFQ(Separated Sector Cyclotron Linac Radio Frequency Quadrupolec)是中国科学院近代物理研究所和北京大学共同研制的国内首台高电荷态强流重离子连续波四杆型加速器,机械加工的高精度是RFQ能否顺利出束的关键步骤之一。为了检测其机械形位公差,采用了激光跟踪仪和关节测量臂合理组合应用的测量新方法,使两种高精度的测量仪器能扬长避短,克服了大尺度工件形位公差传统测量方法的不足,使其在测量过程中发挥其最优的使用性和操作性,有效地提高了工作效率,从而保证RFQ高精度的测量结果。展开更多
射频四极场(Radio frequency quodrupole,RFQ)加速器是一种非常适于用作MeV级能量离子注入的加速器。它具有束流强、体积小、使用方便、离子源处在地电位,还可同时加速正、负两种离子等优点。本文介绍了RFQ加速器在国际上的发展状况及...射频四极场(Radio frequency quodrupole,RFQ)加速器是一种非常适于用作MeV级能量离子注入的加速器。它具有束流强、体积小、使用方便、离子源处在地电位,还可同时加速正、负两种离子等优点。本文介绍了RFQ加速器在国际上的发展状况及其基本原理、北京大学研制的1 MeV RFQ加速器的具体结构、性能以及一种新型RFQ-SFRFQ组合加速器的特点。展开更多
本文介绍了二维PIC(Particle in cell)方法,这种方法常用于粒子动力学模拟中空间电荷作用的计算。并比较了以时间为自变量(t-code)和以纵向位置为自变量(z-code)的两种动力学模拟程序;针对“国家重点基础研究发展规划”洁净核能项目中...本文介绍了二维PIC(Particle in cell)方法,这种方法常用于粒子动力学模拟中空间电荷作用的计算。并比较了以时间为自变量(t-code)和以纵向位置为自变量(z-code)的两种动力学模拟程序;针对“国家重点基础研究发展规划”洁净核能项目中的射频四极(RFQ)加速器结构参数,给出了单束加速和正、负离子束同时加速两种情况下,t-code和z-code模拟得出的传输效率。结果表明,当束团的相位宽度大或能散大时,z-code 在计算空间电荷作用时会引入相对较大的误差,从而应该使用t-code来进行动力学模拟,以获得更准确的结果。展开更多
射频四极场(Radio Frequency Quadrupole,RFQ)的动态调谐一般是通过控制腔翼和腔壁上冷却水的水温来实现的。为了方便RFQ老练和调试过程中的功率提升,设计了一个使用直接数字合成技术(Direct Digital Synthesis,DDS)和锁相环(Phase-lock...射频四极场(Radio Frequency Quadrupole,RFQ)的动态调谐一般是通过控制腔翼和腔壁上冷却水的水温来实现的。为了方便RFQ老练和调试过程中的功率提升,设计了一个使用直接数字合成技术(Direct Digital Synthesis,DDS)和锁相环(Phase-locked Loop,PLL)技术的RFQ低电平控制系统,该系统可以同时实现对RFQ谐振频率的动态跟踪与幅相反馈控制。即使冷却水没有达到热平衡,RFQ也可以加载功率并形成加速场。该控制系统在以FIR(Finite Impulse Response)滤波器为基础的模拟腔实验平台上进行了测试。测试结果表明:该方案能在对虚拟腔谐振频率进行跟踪的同时,实现±0.5%的幅度稳定度和±0.5o的相位稳定度。展开更多
The physics design of a 3 MeV, 30 mA, 352.2 MHz Radio Frequency Quadrupole (RFQ) is done for the future Indian Spallation Neutron Source (ISNS) project at RRCAT, India. The beam dynamics design of RFQ and the error an...The physics design of a 3 MeV, 30 mA, 352.2 MHz Radio Frequency Quadrupole (RFQ) is done for the future Indian Spallation Neutron Source (ISNS) project at RRCAT, India. The beam dynamics design of RFQ and the error analysis of the input beam parameters are done by using standard beam dynamics code PARMTEQM. The electromagnetic stu-dies for the two-dimensional and three-dimensional cavity design are performed using computer codes SUPERFISH and CST Microwave Studio. The physics design of RFQ consisting of the beam dynamics design near the beam axis and the electromagnetic design for the RFQ resonator is described here.展开更多
A beam dynamics design of 352.2 MHz radio-frequency quadrupole(RFQ) of Turkish Accelerator Center(TAC) project which accelerates continuous wave(CW) proton beam with 30 m A current from 50 ke V to3 Me V kinetic energy...A beam dynamics design of 352.2 MHz radio-frequency quadrupole(RFQ) of Turkish Accelerator Center(TAC) project which accelerates continuous wave(CW) proton beam with 30 m A current from 50 ke V to3 Me V kinetic energy has been performed in this study. Also, it includes error analysis of the RFQ, in which some fluctuations have been introduced to input beam parameters to see how the output beam parameters are affected, two-dimensional(2-D) and three-dimensional(3-D) electromagnetic structural design of the RFQ to obtain optimum cavity paramaters that agree with the ones of the beam dynamics. The beam dynamics and error analysis of the RFQ have been done by using LIDOS.RFQ. Electromagnetic design parameters have been obtained by using SUPERFISH for 2-D cavity geometry and CST Microwave Studio for 3-D cavity geometry.展开更多
文摘SSC-Linac RFQ(Separated Sector Cyclotron Linac Radio Frequency Quadrupolec)是中国科学院近代物理研究所和北京大学共同研制的国内首台高电荷态强流重离子连续波四杆型加速器,机械加工的高精度是RFQ能否顺利出束的关键步骤之一。为了检测其机械形位公差,采用了激光跟踪仪和关节测量臂合理组合应用的测量新方法,使两种高精度的测量仪器能扬长避短,克服了大尺度工件形位公差传统测量方法的不足,使其在测量过程中发挥其最优的使用性和操作性,有效地提高了工作效率,从而保证RFQ高精度的测量结果。
文摘射频四极场(Radio frequency quodrupole,RFQ)加速器是一种非常适于用作MeV级能量离子注入的加速器。它具有束流强、体积小、使用方便、离子源处在地电位,还可同时加速正、负两种离子等优点。本文介绍了RFQ加速器在国际上的发展状况及其基本原理、北京大学研制的1 MeV RFQ加速器的具体结构、性能以及一种新型RFQ-SFRFQ组合加速器的特点。
文摘本文介绍了二维PIC(Particle in cell)方法,这种方法常用于粒子动力学模拟中空间电荷作用的计算。并比较了以时间为自变量(t-code)和以纵向位置为自变量(z-code)的两种动力学模拟程序;针对“国家重点基础研究发展规划”洁净核能项目中的射频四极(RFQ)加速器结构参数,给出了单束加速和正、负离子束同时加速两种情况下,t-code和z-code模拟得出的传输效率。结果表明,当束团的相位宽度大或能散大时,z-code 在计算空间电荷作用时会引入相对较大的误差,从而应该使用t-code来进行动力学模拟,以获得更准确的结果。
文摘射频四极场(Radio Frequency Quadrupole,RFQ)的动态调谐一般是通过控制腔翼和腔壁上冷却水的水温来实现的。为了方便RFQ老练和调试过程中的功率提升,设计了一个使用直接数字合成技术(Direct Digital Synthesis,DDS)和锁相环(Phase-locked Loop,PLL)技术的RFQ低电平控制系统,该系统可以同时实现对RFQ谐振频率的动态跟踪与幅相反馈控制。即使冷却水没有达到热平衡,RFQ也可以加载功率并形成加速场。该控制系统在以FIR(Finite Impulse Response)滤波器为基础的模拟腔实验平台上进行了测试。测试结果表明:该方案能在对虚拟腔谐振频率进行跟踪的同时,实现±0.5%的幅度稳定度和±0.5o的相位稳定度。
文摘The physics design of a 3 MeV, 30 mA, 352.2 MHz Radio Frequency Quadrupole (RFQ) is done for the future Indian Spallation Neutron Source (ISNS) project at RRCAT, India. The beam dynamics design of RFQ and the error analysis of the input beam parameters are done by using standard beam dynamics code PARMTEQM. The electromagnetic stu-dies for the two-dimensional and three-dimensional cavity design are performed using computer codes SUPERFISH and CST Microwave Studio. The physics design of RFQ consisting of the beam dynamics design near the beam axis and the electromagnetic design for the RFQ resonator is described here.
基金Supported by the Turkish State Planning Organization(DPT)(No.DPT-2006K120470)
文摘A beam dynamics design of 352.2 MHz radio-frequency quadrupole(RFQ) of Turkish Accelerator Center(TAC) project which accelerates continuous wave(CW) proton beam with 30 m A current from 50 ke V to3 Me V kinetic energy has been performed in this study. Also, it includes error analysis of the RFQ, in which some fluctuations have been introduced to input beam parameters to see how the output beam parameters are affected, two-dimensional(2-D) and three-dimensional(3-D) electromagnetic structural design of the RFQ to obtain optimum cavity paramaters that agree with the ones of the beam dynamics. The beam dynamics and error analysis of the RFQ have been done by using LIDOS.RFQ. Electromagnetic design parameters have been obtained by using SUPERFISH for 2-D cavity geometry and CST Microwave Studio for 3-D cavity geometry.