The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the ...The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the supervised computer. The supervised computer programs the motion paths using A* searching algorithm, and controls mobile robots moving on the grid based chessboard platform via wireless radio frequency (RF) interface. The A* searching algorithm solves shortest path problems of mobile robots from the start point to the target point, and avoids the obstacles on the chessboard platform. The supervised computer calculates the total time to play the game, and computes the residual time to play chess in the step for each player. The simulation results can fired out the shortest motion paths of the mobile robots (chesses) moving to target points from start points in the monitor, and decides the motion path to be existence or not. The eaten chess can moves to the assigned position, and uses the A* searching algorithm to program the motion path, too. Finally, the authors implement the simulation results on the chessboard platform using mobile robots. Users can play the Chinese chess game on the supervised computer according to the Chinese chess game rule, and play each step of the game in the assigned time. The supervised computer can suggests which player don't obey the rules of the game, and decides which player to be a winner. The scenario of the Chinese chess game feedback to the user interface using the image system.展开更多
The article presents multi-pattern formation exchange of mobile robots according to the image signals, programs motion paths using A* searching algorithm, and avoids the collision points of motion paths. The system c...The article presents multi-pattern formation exchange of mobile robots according to the image signals, programs motion paths using A* searching algorithm, and avoids the collision points of motion paths. The system contains an image system, a grid based motion platform, some wireless Radio Frequency (RF) modules and five mobile robots. We use image recognition algorithm to classify variety pattern formation according to variety Quick Response (QR) code symbols on the user interface of the supervised computer. The supervised computer controls five mobile robots to execute formation exchange and presents the movement scenario on the grid based motion platform. We have been developed some pattern formations according to game applications, such as long snake pattern formation, phalanx pattern formation, crane wing pattern formation, sword pattern formation, cone pattern formation, sward pattern tbrmation, T pattern formation, rectangle pattern formation and so on. We develop the user interface of the multi-robot system to program motion paths for variety pattern formation exchange according to the minimum displacement. In the experimental results, the supervised computer recognizes the various QR-code symbols using image system and decides which pattern formation to be selected on real-time. Mobile robots can receive the pattern formation command from the supervised computer, present the movement scenario from the original pattern formation to the assigned pattern formation on the motion platform, and avoid other mobile robots on real-time.展开更多
The fourth generation (4G) wireless communication systems have been deployed or are soon to be deployed in many countries. However, with an .explosion of wireless mobile devices and services, there ~are still some c...The fourth generation (4G) wireless communication systems have been deployed or are soon to be deployed in many countries. However, with an .explosion of wireless mobile devices and services, there ~are still some challenges that cannot be accommodated even by the 4G, such as the spectrum crisis and inter-cell interference. Telecom operators have turned to commit themselves to share available resources, including hardware and software resources. Therefore, with the mutual infrastructure, the 'integration' should be highlighted, especially in the fifth generation (5G) wireless systems that are expected to be deployed beyond 2020. The authors in the article proposed a potential cellular architecture, and discussed the inter-operator radio interface based synchronization (RIBS) for the 5G wireless communication systems. A scheme of inter-operator RIBS and typical scenarios, along with the analysis of the corresponding interference were given. Analysis of the shared parameters, signaling coordination of inter-operator RIBS and listening reference signal (RS) design for RIBS were also carried out.展开更多
文摘The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the supervised computer. The supervised computer programs the motion paths using A* searching algorithm, and controls mobile robots moving on the grid based chessboard platform via wireless radio frequency (RF) interface. The A* searching algorithm solves shortest path problems of mobile robots from the start point to the target point, and avoids the obstacles on the chessboard platform. The supervised computer calculates the total time to play the game, and computes the residual time to play chess in the step for each player. The simulation results can fired out the shortest motion paths of the mobile robots (chesses) moving to target points from start points in the monitor, and decides the motion path to be existence or not. The eaten chess can moves to the assigned position, and uses the A* searching algorithm to program the motion path, too. Finally, the authors implement the simulation results on the chessboard platform using mobile robots. Users can play the Chinese chess game on the supervised computer according to the Chinese chess game rule, and play each step of the game in the assigned time. The supervised computer can suggests which player don't obey the rules of the game, and decides which player to be a winner. The scenario of the Chinese chess game feedback to the user interface using the image system.
文摘The article presents multi-pattern formation exchange of mobile robots according to the image signals, programs motion paths using A* searching algorithm, and avoids the collision points of motion paths. The system contains an image system, a grid based motion platform, some wireless Radio Frequency (RF) modules and five mobile robots. We use image recognition algorithm to classify variety pattern formation according to variety Quick Response (QR) code symbols on the user interface of the supervised computer. The supervised computer controls five mobile robots to execute formation exchange and presents the movement scenario on the grid based motion platform. We have been developed some pattern formations according to game applications, such as long snake pattern formation, phalanx pattern formation, crane wing pattern formation, sword pattern formation, cone pattern formation, sward pattern tbrmation, T pattern formation, rectangle pattern formation and so on. We develop the user interface of the multi-robot system to program motion paths for variety pattern formation exchange according to the minimum displacement. In the experimental results, the supervised computer recognizes the various QR-code symbols using image system and decides which pattern formation to be selected on real-time. Mobile robots can receive the pattern formation command from the supervised computer, present the movement scenario from the original pattern formation to the assigned pattern formation on the motion platform, and avoid other mobile robots on real-time.
基金supported by Chongqing Key Laboratory of Communication Networks and Testing Technologythe Project Supported by Program for Innovation Team Building at Institutions of High Education in Chongqing (KJTD201312)the Hi-Tech Research and Development Program of China (2014AA01A706)
文摘The fourth generation (4G) wireless communication systems have been deployed or are soon to be deployed in many countries. However, with an .explosion of wireless mobile devices and services, there ~are still some challenges that cannot be accommodated even by the 4G, such as the spectrum crisis and inter-cell interference. Telecom operators have turned to commit themselves to share available resources, including hardware and software resources. Therefore, with the mutual infrastructure, the 'integration' should be highlighted, especially in the fifth generation (5G) wireless systems that are expected to be deployed beyond 2020. The authors in the article proposed a potential cellular architecture, and discussed the inter-operator radio interface based synchronization (RIBS) for the 5G wireless communication systems. A scheme of inter-operator RIBS and typical scenarios, along with the analysis of the corresponding interference were given. Analysis of the shared parameters, signaling coordination of inter-operator RIBS and listening reference signal (RS) design for RIBS were also carried out.