The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To ...The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To study the influence of altitude on negative corona characteristics, an experimental platform comprising a movable small corona cage was established: experiments were conducted at four altitudes in the range of 1120-4320 m, and data on the corona current pulse and radio interference level of 0.8-mm diameter fine copper wire under different negative voltages were collected. The experimental results show that the average amplitude, repetition frequency and average current of the corona current pulse increase with increasing altitude. The dispersion of pulse amplitude increases with increase in altitude, while the randomness of the pulse interval decreases continuously. Taking the average current as an intermediate variable,the relationship between radio interference level and altitude is obtained. The result of this research has some significance for understanding the corona discharge characteristics of ultra-highvoltage lines.展开更多
Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wid...Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
An interference alignment(IA)spectrum sharing method based on Rayleigh quotient is proposed for distributed multi-user multi-antenna cognitive radio(CR) networks.The interference from cognitive users(CUs)to the primar...An interference alignment(IA)spectrum sharing method based on Rayleigh quotient is proposed for distributed multi-user multi-antenna cognitive radio(CR) networks.The interference from cognitive users(CUs)to the primary(PR) system is constrained through the Rayleigh quotients of channel matrices to deal with the absence of PR users(PUs) in the IA process.As a result,the IA scheme can be applied in CR networks without harmful interference to PUs.Compared with existing IA based spectrum sharing methods,the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels of the PR system.Moreover,in comparison to other four spectrum sharing methods applicable in general scene,the proposed method leads to improved performance of achievable sum rate of the CR system as well as guarantees the transmission of PUs.展开更多
Integrated sensing and communication(ISAC)technology is a promising candidate for next-generation communication systems.However,severe co-site interference in existing ISAC systems limits the communication and sensing...Integrated sensing and communication(ISAC)technology is a promising candidate for next-generation communication systems.However,severe co-site interference in existing ISAC systems limits the communication and sensing performance,posing significant challenges for ISAC interference management.In this work,we propose a novel interference management scheme based on the normalized least mean square(NLMS)algorithm,which mitigates the impact of co-site interference by reconstructing the interference from the local transmitter and canceling it from the received signal.Simulation results demonstrate that,compared to typical adaptive interference management schemes based on recursive least square(RLS)and stochastic gradient descent(SGD)algorithms,the proposed NLMS algorithm effectively cancels co-site interference and achieves a good balance between computational complexity and convergence performance.展开更多
Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced ...Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced to satisfy interference constraint of primary user(PU), which may lead to low signalto-noise-ratio at cognitive radio receivers(CRRs). Consequently, sum rate of cognitive users(CUs) may fall short of the theoretical maximum through IA. To solve this problem,we propose an adaptive IA SS method for general distributed multi-user multi-antenna CRNs. The relationship between interference and noise power at each CRR is analyzed according to channel state information, interference requirement of PU, and power budget of CUs. Based on the analysis, scenarios of the CRN are classified into 4 cases, and corresponding IA SS algorithms are properly designed. Transmit power adjustment, CU access control and adjusted spatial projection are used to realize IA among CUs. Compared with existing methods, the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels. Moreover, in comparison to other five IA SS methods applicable in general CRN, the proposed method leads to improved achievable sum rate of CUs while guarantees transmission of PU.展开更多
Hidden terminal problem in spectrum sensing is one of the most challenging problems in cognitive radio network(CRN).To tackle this problem,we propose a novel Cooperative Interference Game scheme in this paper.The sche...Hidden terminal problem in spectrum sensing is one of the most challenging problems in cognitive radio network(CRN).To tackle this problem,we propose a novel Cooperative Interference Game scheme in this paper.The scheme adopted full duplex(FD)mode to sense over multiple sub-bands in an iterative manner without extra sensing devices.The implementation algorithm of the proposed scheme is consisted of three modules:the formulation of the maximum transmit power limitation of second user(SU);the self-interference cancellation coefficient;and the optimal location of SU for an optimized low collision probability.Monte Carlo simulation proved that compared with cooperative spectrum sensing,the proposed scheme significantly improves the performance of spectrum detection and mitigates hidden terminal problem to a large extent with less energy consumption.展开更多
For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplit...For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.展开更多
A cognitive radio transmitted reference ultra-wideband(CR-TR-UWB) system is proposed to improve the performance of TR-UWB systems with narrowband interference(NBI) from primary users(PU).The transmitter of the C...A cognitive radio transmitted reference ultra-wideband(CR-TR-UWB) system is proposed to improve the performance of TR-UWB systems with narrowband interference(NBI) from primary users(PU).The transmitter of the CR-TR-UWB system detects the band of PU,and then sends prolate spheroidal wave functions(PSWF) pulses with the same limited band as PU's to reduce interference with PU.The receiver uses a notch filter before autocorrelation to eliminate NBI from PU.The simulation results show that the bit error rate(BER) performance of the CR-TR-UWB system is close to that of TR-UWB systems without NBI when the system is interfered by single or double NBIs with a signal to interference ratio(SIR) of 0 dB,and if the signal to noise ratio(SNR) is 10 dB and the SIR varies from-20 to 10 dB,BER performance varies no more than an order of magnitude.The system has excellent resistance to NBI,strong robustness BER performance at different SNRs,and smaller interference with the same frequency band PU.展开更多
The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-...The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-filling theorem, a novel one-user water-filling algorithm is proposed, and then the corresponding simulation results are given to analyze the feasibility and validity. After that this algorithm is used to solve the communication utility optimization problem subject to the power constraints in cognitive radio network. First, through the gain to noise ratio for cognitive users, a subcarrier and power allocation algorithm based on the optimal frequency partition is proposed for two cognitive users. Then the spectrum sharing algorithm is extended to multiuser conditions such that the greedy and parallel algorithms are proposed for spectrum sharing. Theory and simulation analysis show that the subcarrier and power allocation algorithms can not only protect the primary users but also effectively solve the spectrum and power allocation problem for cognitive users.展开更多
We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by ...We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing stepedge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/φ0, a white flux noise of 29 μφ0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.展开更多
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea...To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.展开更多
In cognitive radio networks,delay scheduling optimization has attracted an increasing attention in recent years. Numerous researches have been performed on it with different scenarios. However,these approaches have ei...In cognitive radio networks,delay scheduling optimization has attracted an increasing attention in recent years. Numerous researches have been performed on it with different scenarios. However,these approaches have either high computational complexity or relatively poor performance. Delay scheduling is a constraint optimization problem with non-deterministic polynomial( NP) hard feathers. In this paper,we proposed an immune algorithm-based suboptimal method to solve the problem. Suitable immune operators have been designed such as encoding,clone,mutation and selection. The simulation results show that the proposed algorithm yields near-optimal performance and operates with much lower computational complexity.展开更多
Cognitive radio (CR) is found to be an emerging key for efficient spectrum utilization. In this paper, spectrum sharing among service providers with the help of cognitive radio has been investigated. The technique o...Cognitive radio (CR) is found to be an emerging key for efficient spectrum utilization. In this paper, spectrum sharing among service providers with the help of cognitive radio has been investigated. The technique of spectrum sharing among service providers to share the licensed spectrum of licensed service providers in a dynamic manner is considered. The performance of the wireless network with opportunistic spectrum sharing techniques is analyzed. Thus, the spectral utilization and efficiency of sensing is increased, the interference is minimized, and the call blockage is reduced.展开更多
This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and ...This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and operate in the same spectrum. Joint MMSE-based parallel interference cancellation (PIC) and Turbo decoding scheme is proposed to reduce the interference to the PUs, as well as to the SUs, in which the minimum mean square estimation (MMSE) filter is only employed in the first iteration, regarded as the "weakest link" of the whole detection process, to improve the quality of the preliminary detections results before they are fed to the Turbo decoder. Simulation results show that the proposed scheme can efficiently eliminate the interference to the PUs, as well as to the SUs.展开更多
Cognitive radio is able to share the spectrum with primary licensed user,which greatly improves the spectrum efficiency.We study the optimal power allocation for cognitive radio to maximize its ergodic capacity under ...Cognitive radio is able to share the spectrum with primary licensed user,which greatly improves the spectrum efficiency.We study the optimal power allocation for cognitive radio to maximize its ergodic capacity under interference outage constraint.An optimal power allocation scheme for the secondary user with complete channel state information is proposed and its approxi-mation is presented in closed form in Rayleigh fading channels.When the complete channel state in-formation is not available,a more practical transmitter-side joint access ratio and transmit power constraint is proposed.The new constraint guarantees the same impact on interference outage prob-ability at primary user receiver.Both the optimal power allocation and transmit rate under the new constraint are presented in closed form.Simulation results evaluate the performance of proposed power allocation schemes and verify our analysis.展开更多
Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the sig...Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.展开更多
Cognitive Radio(CR) has been proposed as a system-level means to improve the spectrum utilization efficiency.The most significant premise for CR networks is to avoid harmful interference to the licensed users.Therefor...Cognitive Radio(CR) has been proposed as a system-level means to improve the spectrum utilization efficiency.The most significant premise for CR networks is to avoid harmful interference to the licensed users.Therefore,it is very important to estimate the potential inter-ference introduced by the deployment of CR networks so that CR networks can be coexistence with Licensed User(LU) networks by designing proper system parameters.In this paper,two statistical models of potential interference due to CR networks are developed based on transmitter and receiver oriented spectrum sensing schemes,respectively.The approximate probability dis-tributions of aggregate interference introduced by CR networks are then derived with respect to the obtained models.With the help of these probability distributions,a method is further pre-sented to get the critical system parameter,i.e.,sensing distance and user density of the CR networks,so that the introduced interference can be controlled to predefined level.Numerical results validate the proposed interference estimation method and confirm the effectiveness of in-terference distribution based system parameter design.展开更多
Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use...Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use a deep learning method to identify RFI in frequency spectrum data,and propose a neural network based on Unet that combines the principles of depthwise separable convolution and residual,named DSC Based Dual-Resunet.Compared with the existing Unet network,DSC Based Dual-Resunet performs better in terms of accuracy,F1 score,and MIoU,and is also better in terms of computation cost where the model size and parameter amount are 12.5%of Unet and the amount of computation is 38%of Unet.The experimental results show that the proposed network is a high-performance and lightweight network,and it is hopeful to be applied to RFI identification of radio telescopes on a large scale.展开更多
基金supported by the Science and Technology Project of State Grid Corporation of China (No.5200202155587A-0-5-GC)。
文摘The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To study the influence of altitude on negative corona characteristics, an experimental platform comprising a movable small corona cage was established: experiments were conducted at four altitudes in the range of 1120-4320 m, and data on the corona current pulse and radio interference level of 0.8-mm diameter fine copper wire under different negative voltages were collected. The experimental results show that the average amplitude, repetition frequency and average current of the corona current pulse increase with increasing altitude. The dispersion of pulse amplitude increases with increase in altitude, while the randomness of the pulse interval decreases continuously. Taking the average current as an intermediate variable,the relationship between radio interference level and altitude is obtained. The result of this research has some significance for understanding the corona discharge characteristics of ultra-highvoltage lines.
基金supported by the National Natural Science Foundation of China under Grant No. 61201143the Scientific Research Foundation for Introduced Talent of Nanjing University of Aeronautics and Astronautics under Grant No. 56YAH13029
文摘Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金supported by National Natural Science Foundation of China under Grant 6120123361271262Fundamental Research Funds for the Central Universities (2013G1241114)
文摘An interference alignment(IA)spectrum sharing method based on Rayleigh quotient is proposed for distributed multi-user multi-antenna cognitive radio(CR) networks.The interference from cognitive users(CUs)to the primary(PR) system is constrained through the Rayleigh quotients of channel matrices to deal with the absence of PR users(PUs) in the IA process.As a result,the IA scheme can be applied in CR networks without harmful interference to PUs.Compared with existing IA based spectrum sharing methods,the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels of the PR system.Moreover,in comparison to other four spectrum sharing methods applicable in general scene,the proposed method leads to improved performance of achievable sum rate of the CR system as well as guarantees the transmission of PUs.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFB2900200in part by National Natural Science Foundation of China under Grant Nos.61925101 and 62271085in part by Beijing Natural Science Foundation under Grant No.L223007-2.
文摘Integrated sensing and communication(ISAC)technology is a promising candidate for next-generation communication systems.However,severe co-site interference in existing ISAC systems limits the communication and sensing performance,posing significant challenges for ISAC interference management.In this work,we propose a novel interference management scheme based on the normalized least mean square(NLMS)algorithm,which mitigates the impact of co-site interference by reconstructing the interference from the local transmitter and canceling it from the received signal.Simulation results demonstrate that,compared to typical adaptive interference management schemes based on recursive least square(RLS)and stochastic gradient descent(SGD)algorithms,the proposed NLMS algorithm effectively cancels co-site interference and achieves a good balance between computational complexity and convergence performance.
基金supported by National Natuvertexesral Science Foundation of China under Grant 61201233 61271262 and 61701043
文摘Interference alignment(IA) is suitable for cognitive radio networks(CRNs).However, in IA spectrum sharing(SS) process of general underlay CRNs, transmit power of cognitive radio transmitters usually should be reduced to satisfy interference constraint of primary user(PU), which may lead to low signalto-noise-ratio at cognitive radio receivers(CRRs). Consequently, sum rate of cognitive users(CUs) may fall short of the theoretical maximum through IA. To solve this problem,we propose an adaptive IA SS method for general distributed multi-user multi-antenna CRNs. The relationship between interference and noise power at each CRR is analyzed according to channel state information, interference requirement of PU, and power budget of CUs. Based on the analysis, scenarios of the CRN are classified into 4 cases, and corresponding IA SS algorithms are properly designed. Transmit power adjustment, CU access control and adjusted spatial projection are used to realize IA among CUs. Compared with existing methods, the proposed method is more general because of breaking the restriction that CUs can only transmit on the idle sub-channels. Moreover, in comparison to other five IA SS methods applicable in general CRN, the proposed method leads to improved achievable sum rate of CUs while guarantees transmission of PU.
基金supported by National High-Tech R&D Program(863 Program 2014AA01A707, 2015AA01A705 )
文摘Hidden terminal problem in spectrum sensing is one of the most challenging problems in cognitive radio network(CRN).To tackle this problem,we propose a novel Cooperative Interference Game scheme in this paper.The scheme adopted full duplex(FD)mode to sense over multiple sub-bands in an iterative manner without extra sensing devices.The implementation algorithm of the proposed scheme is consisted of three modules:the formulation of the maximum transmit power limitation of second user(SU);the self-interference cancellation coefficient;and the optimal location of SU for an optimized low collision probability.Monte Carlo simulation proved that compared with cooperative spectrum sensing,the proposed scheme significantly improves the performance of spectrum detection and mitigates hidden terminal problem to a large extent with less energy consumption.
基金supported by Science and Technology Project of SGCC(SG1021)
文摘For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.
基金The National Research and Development Program of China(863 Program)(No.2007AA12Z238)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No. 12KJD510008)
文摘A cognitive radio transmitted reference ultra-wideband(CR-TR-UWB) system is proposed to improve the performance of TR-UWB systems with narrowband interference(NBI) from primary users(PU).The transmitter of the CR-TR-UWB system detects the band of PU,and then sends prolate spheroidal wave functions(PSWF) pulses with the same limited band as PU's to reduce interference with PU.The receiver uses a notch filter before autocorrelation to eliminate NBI from PU.The simulation results show that the bit error rate(BER) performance of the CR-TR-UWB system is close to that of TR-UWB systems without NBI when the system is interfered by single or double NBIs with a signal to interference ratio(SIR) of 0 dB,and if the signal to noise ratio(SNR) is 10 dB and the SIR varies from-20 to 10 dB,BER performance varies no more than an order of magnitude.The system has excellent resistance to NBI,strong robustness BER performance at different SNRs,and smaller interference with the same frequency band PU.
基金supported by the National Natural Science Foundation of China(61071104)the National High Technology Research and Development Program(2008AA12Z305)
文摘The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-filling theorem, a novel one-user water-filling algorithm is proposed, and then the corresponding simulation results are given to analyze the feasibility and validity. After that this algorithm is used to solve the communication utility optimization problem subject to the power constraints in cognitive radio network. First, through the gain to noise ratio for cognitive users, a subcarrier and power allocation algorithm based on the optimal frequency partition is proposed for two cognitive users. Then the spectrum sharing algorithm is extended to multiuser conditions such that the greedy and parallel algorithms are proposed for spectrum sharing. Theory and simulation analysis show that the subcarrier and power allocation algorithms can not only protect the primary users but also effectively solve the spectrum and power allocation problem for cognitive users.
基金supported by the National Basic Research Program of China(Grant No.2011CBA00106)the National Natural Science Foundation of China(Grant No.11074008)the Research Fund for the Doctoral Program of Higher Education,China(Grant No.20100001120006)
文摘We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing stepedge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/φ0, a white flux noise of 29 μφ0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324).
文摘To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.
基金Supported by the National Natural Science Foundation of China(U1504613,U1504602)the Research Foundation for the Doctoral Program of China(2015M582622)
文摘In cognitive radio networks,delay scheduling optimization has attracted an increasing attention in recent years. Numerous researches have been performed on it with different scenarios. However,these approaches have either high computational complexity or relatively poor performance. Delay scheduling is a constraint optimization problem with non-deterministic polynomial( NP) hard feathers. In this paper,we proposed an immune algorithm-based suboptimal method to solve the problem. Suitable immune operators have been designed such as encoding,clone,mutation and selection. The simulation results show that the proposed algorithm yields near-optimal performance and operates with much lower computational complexity.
文摘Cognitive radio (CR) is found to be an emerging key for efficient spectrum utilization. In this paper, spectrum sharing among service providers with the help of cognitive radio has been investigated. The technique of spectrum sharing among service providers to share the licensed spectrum of licensed service providers in a dynamic manner is considered. The performance of the wireless network with opportunistic spectrum sharing techniques is analyzed. Thus, the spectral utilization and efficiency of sensing is increased, the interference is minimized, and the call blockage is reduced.
基金Project supported by the National Natural Science Foundation of China (Grant No.60972055)the Development Foundation of the Education Commission of Shanghai Municipality (Grant No.09CG40)+1 种基金the Shanghai Pujiang Program (Grant No.08PJ14057)the Science and Technology Commission of Shanghai Municipality (Grant No.10220710300)
文摘This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and operate in the same spectrum. Joint MMSE-based parallel interference cancellation (PIC) and Turbo decoding scheme is proposed to reduce the interference to the PUs, as well as to the SUs, in which the minimum mean square estimation (MMSE) filter is only employed in the first iteration, regarded as the "weakest link" of the whole detection process, to improve the quality of the preliminary detections results before they are fed to the Turbo decoder. Simulation results show that the proposed scheme can efficiently eliminate the interference to the PUs, as well as to the SUs.
基金Supported by the National Natural Science Foundation of China (No. 60972008)
文摘Cognitive radio is able to share the spectrum with primary licensed user,which greatly improves the spectrum efficiency.We study the optimal power allocation for cognitive radio to maximize its ergodic capacity under interference outage constraint.An optimal power allocation scheme for the secondary user with complete channel state information is proposed and its approxi-mation is presented in closed form in Rayleigh fading channels.When the complete channel state in-formation is not available,a more practical transmitter-side joint access ratio and transmit power constraint is proposed.The new constraint guarantees the same impact on interference outage prob-ability at primary user receiver.Both the optimal power allocation and transmit rate under the new constraint are presented in closed form.Simulation results evaluate the performance of proposed power allocation schemes and verify our analysis.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.
基金Supported by the High-tech Research and Development Program (863 Program) of China (No. 2009AA011801)the National Basic Research Program (973 Program) of China (No. 2009CB320405)+1 种基金the Foundation Project of National Key Laboratory of Science and Technology on Communications (No. 9140C0202061004)the Fundamental Research Funds for the Central Universities (No. ZYGX2009X002)
文摘Cognitive Radio(CR) has been proposed as a system-level means to improve the spectrum utilization efficiency.The most significant premise for CR networks is to avoid harmful interference to the licensed users.Therefore,it is very important to estimate the potential inter-ference introduced by the deployment of CR networks so that CR networks can be coexistence with Licensed User(LU) networks by designing proper system parameters.In this paper,two statistical models of potential interference due to CR networks are developed based on transmitter and receiver oriented spectrum sensing schemes,respectively.The approximate probability dis-tributions of aggregate interference introduced by CR networks are then derived with respect to the obtained models.With the help of these probability distributions,a method is further pre-sented to get the critical system parameter,i.e.,sensing distance and user density of the CR networks,so that the introduced interference can be controlled to predefined level.Numerical results validate the proposed interference estimation method and confirm the effectiveness of in-terference distribution based system parameter design.
基金supported by the National Natural Science Foundation of China(Grant No.11790305)partially supported by the Specialized Research Fund for State Key Laboratories(Grant No.SYS-202002-04)。
文摘Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use a deep learning method to identify RFI in frequency spectrum data,and propose a neural network based on Unet that combines the principles of depthwise separable convolution and residual,named DSC Based Dual-Resunet.Compared with the existing Unet network,DSC Based Dual-Resunet performs better in terms of accuracy,F1 score,and MIoU,and is also better in terms of computation cost where the model size and parameter amount are 12.5%of Unet and the amount of computation is 38%of Unet.The experimental results show that the proposed network is a high-performance and lightweight network,and it is hopeful to be applied to RFI identification of radio telescopes on a large scale.