Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interfe...Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interference, radio resource allocation at both sides should be carefully re-optimized. In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system(DAS) coexist via spectrum sharing. We particularly utilize the radio map(RM) to reduce the system overhead for channel acquisition. Based on the large-scale channel state information at the transmitter(CSIT), which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful leakage interference to the terrestrial mobile users. Simulation results demonstrate that the proposed RM-based coordination scheme can significantly promote the performance of satellite terrestrial coexistence, although the small-scale channel fading has been ignored in the formulated optimization.展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
As the most sensitive single-dish radio telescope,the Five-hundred Aperture Spherical radio Telescope(FAST)is very susceptive to radio frequency interference(RFI)from active radio services.Moreover,due to the rapid de...As the most sensitive single-dish radio telescope,the Five-hundred Aperture Spherical radio Telescope(FAST)is very susceptive to radio frequency interference(RFI)from active radio services.Moreover,due to the rapid development of space applications and research,satellite interference has become one of the main RFI sources for FAST,particularly at the L band.Therefore,we have developed several measures to mitigate satellite RFI.On the one hand,an antenna with 4.5-meter diameter has been constructed and installed at the FAST site to detect the satellite interference in the frequency band between 1 to 5 GHz.Meanwhile,we have developed a satellite RFI database based on the FAST sky coverage,the observing frequency bands,and known satellite systems.By combining the satellite RFI monitoring antenna and the database,we have established a satellite RFI mitigation system.With this system,we can not only track satellites to collect their characteristics and update the database but also help the observer to program the observing plan by predicting satellite interference.During the practical observation of FAST at the L band,the feasibility of this system to mitigate satellite RFI has been proved.In particular,the system effectively avoids strong satellite interference from entering the main beam of the telescope and causing receiver saturation.展开更多
The paper presents an analysis of variations in Total Electron Content (TEC) observed through Global Positioning System (GPS) at Guwahati (26?10'N, 91?45'E), in relation to the Japan Earthquakes (EQs) of March...The paper presents an analysis of variations in Total Electron Content (TEC) observed through Global Positioning System (GPS) at Guwahati (26?10'N, 91?45'E), in relation to the Japan Earthquakes (EQs) of March 9 and 11, 2011. For this purpose, the azimuthal positions and trajectories of abnormally increased number of satellites at the epicentre location appearing into the Field Of View (FOV) of GPS antenna at Guwahati and consequent pseudo enhancement in TEC are taken as inputs. The paper discusses how the analysis results could provide warning alarms of two earthquakes possibly one on March 8 or 9 and the other on March 11 or 12, 2011 with epicenter positions around 135?E to 145?E and 35?N to 40?N, that coincides with location of Japan Earthquakes. A projected forecast on EQ magnitude of M > 8.5 is also made. The explanations to the observed modifications in TEC features and abnormal increase in number of satellites are purported to be the result of coupling between lithosphere and troposphere forced in by pre-earthquake processes that had spread the zone of activities to as far as Guwahati.展开更多
This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects ...This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects due to buildings, with variation of the elevation angle of the satellite. The wideband parameters (coherent bandwidth and time delay spreading) for LMS channel, in residential and urban environments, are computed. These parameters can be considered as a measure of the amount of ISI (inter-symbol interference) of the radio channel, which distorts the received signal and accordingly increases the bit error rate. The calculated values for these parameters using our model, show very good agreement with the corresponding measured ones, which accordingly shows the validity of the developed model for radio channel design in satellite mobile communication systems.展开更多
The relationship between the surveying and contro l network(CSN) for earth-orbit satellite and spatial geodesy, and the relationshi p between the CSN for deep space celestial bodies and detectors, and deep space detec...The relationship between the surveying and contro l network(CSN) for earth-orbit satellite and spatial geodesy, and the relationshi p between the CSN for deep space celestial bodies and detectors, and deep space detection are briefly summarized, and so are the basic technical needs of the de ep space surveying and control network(DSN). Then, the techniques, the constitue nts and the distributing of Chinese satellite CSN (CSCSN) and other radio observ ing establishments in China are introduced. Lastly, with the primary CSCSN and o ther observing establishments, some projects for China to rebuild a more perfect CSCSN, and to establish a DSN are analyzed and stated.展开更多
Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth obser...Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth observation satellite. Indian Television Network (National Channel) has introduced a radiofrequency accelerator to produce X-emission at resonance with an activation of artificial human environment under relay analogy in the presence of an Earth observation satellite. Thermonuclear reaction communicates several windows’ channel via Earth observation satellite. Star Television network communicates an artificial human environment under the influence of a relay circuit with different pulse code units of human brain with an active influence of an artificial sensation to generate the loss of humanity around the world.展开更多
A detailed analysis of the influence of Rydberg states to the behavior of GPS satellite signals in the D and E atmospheric layers has been carried out. It is demonstrated that these states are the main reason for the ...A detailed analysis of the influence of Rydberg states to the behavior of GPS satellite signals in the D and E atmospheric layers has been carried out. It is demonstrated that these states are the main reason for the GPS signal distortion. It is shown that the behavior of satellite signals is associated with the spectral characteristics of the UHF radiation of the Rydberg states depending on the geomagnetic conditions of ionosphere. The foundations of the quantum theory of distortion and delay of GPS satellite signal propagation through D and E atmospheric layers are analyzed and expounded. The problem reduces to the resonant scattering of photons, moving in the electromagnetic field of the signal, to the Rydberg complexes populated in a two-temperature non-equilibrium plasma. The processes of creation of additional photons because of stimulated emission and resonance scattering of photons are considered. In the present work, the quantum theory of the propagation of a satellite signal in the Earth’s upper atmosphere, firstly earlier proposed by the same authors, is described in detail. The general problems of the theory and possible theoretical and applied consequences are discussed. It is explained that two main processes occurring here, are directly related to the resonant quantum properties of the propagation medium. The first process leads to a direct increase in the power of the received signal, and second—to a shift in the signal carrier frequency??and the time delay??of its propagation. The main reasons of the processes are scattering of the Rydberg electron by the ion core and presence of the neutral medium molecule in the intermediate autoionization states of the composite system populated by the strong non-adiabatic coupling of electron and nuclear motions. The main purposes of our investigation are the physical justification of the formation of parameters ?and??using the quantum dynamics of the electron behavior in the intermediate state of the Rydberg complex A**M and the estimation of the quantities of??and??in the elementary act of elastic (Rayleigh) photon scattering.展开更多
来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜...来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)开发了卫星电磁干扰监测软件,主要包括卫星数据库、观测模块和监测模块。近年来随着多个巨型卫星星座的规划发射以及望远镜观测模式的增多,卫星对射电天文观测的影响更为复杂,已有的软件已经不能满足实际的需要。为此,本文在单个卫星干扰分析的基础上提出了卫星星座的干扰评估方法,并对已有监测软件进行了升级,升级后卫星数据库覆盖更多的在轨卫星及星座信息且能够自动化更新,观测模块能够支持更多种观测模式下的卫星过境预测和干扰评估。在实际天文观测中,通过接在FAST接收机上的频谱仪数据对软件的干扰预测结果进行了实验验证,结果证明升级后的软件能够在多种观测模式下预测可能威胁的卫星以及对应的过境时间,为望远镜观测规划的调整、卫星干扰的规避和接收系统的保护提供重要的支撑。展开更多
基金supported in part by the National Science Foundation of China under grant No.61701457
文摘Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interference, radio resource allocation at both sides should be carefully re-optimized. In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system(DAS) coexist via spectrum sharing. We particularly utilize the radio map(RM) to reduce the system overhead for channel acquisition. Based on the large-scale channel state information at the transmitter(CSIT), which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful leakage interference to the terrestrial mobile users. Simulation results demonstrate that the proposed RM-based coordination scheme can significantly promote the performance of satellite terrestrial coexistence, although the small-scale channel fading has been ignored in the formulated optimization.
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23000000)the National Key Research and Development Program(No.2019YFB1312704)+2 种基金the National Natural Science Foundation of China(Program No.U1831128)the International Partnership Program of Chinese Academy of Sciences(Program No.114A11KYSB20160008)supported by the National Development and Reform Commission,the Key Laboratory of FAST of CAS。
文摘As the most sensitive single-dish radio telescope,the Five-hundred Aperture Spherical radio Telescope(FAST)is very susceptive to radio frequency interference(RFI)from active radio services.Moreover,due to the rapid development of space applications and research,satellite interference has become one of the main RFI sources for FAST,particularly at the L band.Therefore,we have developed several measures to mitigate satellite RFI.On the one hand,an antenna with 4.5-meter diameter has been constructed and installed at the FAST site to detect the satellite interference in the frequency band between 1 to 5 GHz.Meanwhile,we have developed a satellite RFI database based on the FAST sky coverage,the observing frequency bands,and known satellite systems.By combining the satellite RFI monitoring antenna and the database,we have established a satellite RFI mitigation system.With this system,we can not only track satellites to collect their characteristics and update the database but also help the observer to program the observing plan by predicting satellite interference.During the practical observation of FAST at the L band,the feasibility of this system to mitigate satellite RFI has been proved.In particular,the system effectively avoids strong satellite interference from entering the main beam of the telescope and causing receiver saturation.
文摘The paper presents an analysis of variations in Total Electron Content (TEC) observed through Global Positioning System (GPS) at Guwahati (26?10'N, 91?45'E), in relation to the Japan Earthquakes (EQs) of March 9 and 11, 2011. For this purpose, the azimuthal positions and trajectories of abnormally increased number of satellites at the epicentre location appearing into the Field Of View (FOV) of GPS antenna at Guwahati and consequent pseudo enhancement in TEC are taken as inputs. The paper discusses how the analysis results could provide warning alarms of two earthquakes possibly one on March 8 or 9 and the other on March 11 or 12, 2011 with epicenter positions around 135?E to 145?E and 35?N to 40?N, that coincides with location of Japan Earthquakes. A projected forecast on EQ magnitude of M > 8.5 is also made. The explanations to the observed modifications in TEC features and abnormal increase in number of satellites are purported to be the result of coupling between lithosphere and troposphere forced in by pre-earthquake processes that had spread the zone of activities to as far as Guwahati.
文摘This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects due to buildings, with variation of the elevation angle of the satellite. The wideband parameters (coherent bandwidth and time delay spreading) for LMS channel, in residential and urban environments, are computed. These parameters can be considered as a measure of the amount of ISI (inter-symbol interference) of the radio channel, which distorts the received signal and accordingly increases the bit error rate. The calculated values for these parameters using our model, show very good agreement with the corresponding measured ones, which accordingly shows the validity of the developed model for radio channel design in satellite mobile communication systems.
文摘The relationship between the surveying and contro l network(CSN) for earth-orbit satellite and spatial geodesy, and the relationshi p between the CSN for deep space celestial bodies and detectors, and deep space detection are briefly summarized, and so are the basic technical needs of the de ep space surveying and control network(DSN). Then, the techniques, the constitue nts and the distributing of Chinese satellite CSN (CSCSN) and other radio observ ing establishments in China are introduced. Lastly, with the primary CSCSN and o ther observing establishments, some projects for China to rebuild a more perfect CSCSN, and to establish a DSN are analyzed and stated.
文摘Thermonuclear reaction exerts its influence of X-emission to produce several windows’ channel in the presence of an oscillator under electrical relay circuit with a decisive importance to a radiofrequency Earth observation satellite. Indian Television Network (National Channel) has introduced a radiofrequency accelerator to produce X-emission at resonance with an activation of artificial human environment under relay analogy in the presence of an Earth observation satellite. Thermonuclear reaction communicates several windows’ channel via Earth observation satellite. Star Television network communicates an artificial human environment under the influence of a relay circuit with different pulse code units of human brain with an active influence of an artificial sensation to generate the loss of humanity around the world.
文摘A detailed analysis of the influence of Rydberg states to the behavior of GPS satellite signals in the D and E atmospheric layers has been carried out. It is demonstrated that these states are the main reason for the GPS signal distortion. It is shown that the behavior of satellite signals is associated with the spectral characteristics of the UHF radiation of the Rydberg states depending on the geomagnetic conditions of ionosphere. The foundations of the quantum theory of distortion and delay of GPS satellite signal propagation through D and E atmospheric layers are analyzed and expounded. The problem reduces to the resonant scattering of photons, moving in the electromagnetic field of the signal, to the Rydberg complexes populated in a two-temperature non-equilibrium plasma. The processes of creation of additional photons because of stimulated emission and resonance scattering of photons are considered. In the present work, the quantum theory of the propagation of a satellite signal in the Earth’s upper atmosphere, firstly earlier proposed by the same authors, is described in detail. The general problems of the theory and possible theoretical and applied consequences are discussed. It is explained that two main processes occurring here, are directly related to the resonant quantum properties of the propagation medium. The first process leads to a direct increase in the power of the received signal, and second—to a shift in the signal carrier frequency??and the time delay??of its propagation. The main reasons of the processes are scattering of the Rydberg electron by the ion core and presence of the neutral medium molecule in the intermediate autoionization states of the composite system populated by the strong non-adiabatic coupling of electron and nuclear motions. The main purposes of our investigation are the physical justification of the formation of parameters ?and??using the quantum dynamics of the electron behavior in the intermediate state of the Rydberg complex A**M and the estimation of the quantities of??and??in the elementary act of elastic (Rayleigh) photon scattering.
文摘来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)开发了卫星电磁干扰监测软件,主要包括卫星数据库、观测模块和监测模块。近年来随着多个巨型卫星星座的规划发射以及望远镜观测模式的增多,卫星对射电天文观测的影响更为复杂,已有的软件已经不能满足实际的需要。为此,本文在单个卫星干扰分析的基础上提出了卫星星座的干扰评估方法,并对已有监测软件进行了升级,升级后卫星数据库覆盖更多的在轨卫星及星座信息且能够自动化更新,观测模块能够支持更多种观测模式下的卫星过境预测和干扰评估。在实际天文观测中,通过接在FAST接收机上的频谱仪数据对软件的干扰预测结果进行了实验验证,结果证明升级后的软件能够在多种观测模式下预测可能威胁的卫星以及对应的过境时间,为望远镜观测规划的调整、卫星干扰的规避和接收系统的保护提供重要的支撑。