A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed mode...A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.展开更多
S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameter...S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.展开更多
Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the softw...Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.展开更多
The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to ...The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as a mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion. In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathodc under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the mode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the a mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.展开更多
In this paper, the bit error rate (BER) performance for typical mobile radio channels is simulated and analyzed based on a tapped delay line model. The investigation is focused on the propagation environments determin...In this paper, the bit error rate (BER) performance for typical mobile radio channels is simulated and analyzed based on a tapped delay line model. The investigation is focused on the propagation environments determined by the average delay profile and the Doppler spectra. The profile characteristics and their influences on channel behavior are also examined.展开更多
In radar system simulation,the reliability of simulation results depends not only on radar and target models,but also on radio frequency (RF) environment models,including clutter,multipath,diffraction,atmosphere refra...In radar system simulation,the reliability of simulation results depends not only on radar and target models,but also on radio frequency (RF) environment models,including clutter,multipath,diffraction,atmosphere refraction and attenuation.In traditional radar function simulation,all of these factors are grouped into a single pattern-propagation factor and can only give limited information for radar models.In signal-level simulation,radar models require simulated echoes should include information such as delay,doppler frequency,polarization,etc.By discussing and analyzing the principles and algorithms of RF environment effects (clutter,multipath,diffraction,atmosphere refraction and attenuation),this paper is supposed to provide a general RF environment model in signal-level.Algorithms for the Weibull clutter with Gaussian power spectral density (PSD) is discussed;A standard multipath and diffraction algorithm is analyzed,and the spherical earth and knife edge(SEKE)diffraction algorithm is introduced;The ray-tracing algorithm and the effective earth model are discussed;Algorithms for the absorption of oxygen and vapor are introduced;For certain algorithms,some practical advice is given.Finally,an object-oriented RF environment effects model is implemented,which has been dedicatedly designed for signal-level simulations and can provide relatively authentic simulated RF environment for the signal-level simulation of radar systems.Two simulation examples including clutter model and multipath and diffraction model are carried out and analyzed.展开更多
The Square Kilometre Array(SKA)is the largest radio interferometer under construction in the world.Its immense amount of visibility data poses a considerable challenge to the subsequent processing by the science data ...The Square Kilometre Array(SKA)is the largest radio interferometer under construction in the world.Its immense amount of visibility data poses a considerable challenge to the subsequent processing by the science data processor(SDP).Baseline dependent averaging(BDA),which reduces the amount of visibility data based on the baseline distribution of the radio interferometer,has become a focus of SKA SDP development.This paper developed and implemented a full-featured BDA module based on Radio Astronomy Simulation,Calibration and Imaging Library(RASCIL).Simulated observations were then performed with RASCIL based on a full-scale SKA1-LOW configuration.The performance of the BDA was systematically investigated and evaluated based on the simulated data.The experimental results confirmed that the amount of visibility data is reduced by about 50%to 85%for different time intervals(Δt_(max)).In addition,differentΔt_(max)have a significant effect on the imaging quality.The smallerΔt_(max)is,the smaller the degradation of imaging quality.展开更多
首先介绍了射频识别(Rad io Frequency Identification,RFID)系统的工作原理,阐述了系统的结构和模块划分;在此基础上使用Matlab/Simulink对RFID系统进行了模型设计;最后,利用此模型对系统进行了实验仿真,并具体分析了码间干扰和调制深...首先介绍了射频识别(Rad io Frequency Identification,RFID)系统的工作原理,阐述了系统的结构和模块划分;在此基础上使用Matlab/Simulink对RFID系统进行了模型设计;最后,利用此模型对系统进行了实验仿真,并具体分析了码间干扰和调制深度对整个系统性能的影响。展开更多
Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods a...Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods are mostly used in previous aeroservoelastic studies.However,series of assumptions and simplification on structures,aerodynamics and flight control systems are unavoidably introduced,and various nonlinear factors are also ignored,therefore,they result in considerable errors.A novel method called aeroservoelasticity semi-physical simulation test is proposed in this paper,which takes the flexible missile with control system as the test object.Vibration signals at several locations of the missile are measured by accelerometers,then corresponding unsteady aerodynamics is computed based on the fact that airflow at high Mach is nearly quasi-steady,and finally unsteady aerodynamics is exerted simultaneously by shakers at certain locations of the missile.The aeroservoelasticity semi-physical simulation test system can be constructed after the control system is closed.Open loop transfer function test and closed loop stability test are carried out in sequence.The test principle and method proposed in this paper are verified by the concordance between the results of numerical simulation and experiment.展开更多
In atmospheric radio-frequency (rf) discharges, the plasma parameters, such as electron density, sheath thickness and sheath voltage, are not easy to be probed experimentally, while the electrical characteristics, s...In atmospheric radio-frequency (rf) discharges, the plasma parameters, such as electron density, sheath thickness and sheath voltage, are not easy to be probed experimentally, while the electrical characteristics, such as impedance, resistance and reactance, are relatively convenient to be measured. In this paper we presented a simple theoretical model derived from the fluid description of generated plasmas without considering the circuit model, to investigate the relationship between the plasma impedance and plasma parameters. By introducing a relaxation frequency, the plasma impedance could be predicted by formulas presented in this study, and the mean electron density and sheath thickness can also be calculated from the measured or simulated impedance and reactance, respectively.展开更多
A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown ...A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64:t=4 cm-lTorr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.展开更多
In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including contin...In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to- argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.展开更多
In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based ...In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.展开更多
This paper proposes a dynamic channel allocation scheme based on cognitive radio (CR). Firstly, the channel probing based on MMSE criterion is implemented, with which the probability distribution of channels in use ...This paper proposes a dynamic channel allocation scheme based on cognitive radio (CR). Firstly, the channel probing based on MMSE criterion is implemented, with which the probability distribution of channels in use by the primary user is given. Next, take the distances between the CR users and the primary user as basis to stratify the CR users, among the layers; the simulated annealing (SA) algorithm is used to implement the channel assigmnent. This algorithm differs from the well-known 0-1 matrix based allocation scheme, and keeps a good tradeoff between complexity, capacity as well as the fairness problems. The simulation results show that this algorithm can improve the allocation efficiency effectively.展开更多
The wind environment of a site is one of the important factors affecting the observation performance of large aperture and high-performance radio telescopes.Exploring the relationship between the effects of different ...The wind environment of a site is one of the important factors affecting the observation performance of large aperture and high-performance radio telescopes.Exploring the relationship between the effects of different terrains on wind flow is important to optimize the wind environment of the site.The terrain of the Qitai radio telescope(QTT)site located in east Tianshan Mountains at an elevation of about 1800 m was used to study the wind flow in the adjacent zone of antenna based on numerical simulation.The area from 600m south to 600m north of the antenna is defined as the antenna adjacent zone,and three groups of boundaries with different terrains are set up upstream and downstream,respectively.Since the zone where the antenna is located is a slope terrain,in order to verify the influence of terrain on the wind flow and to clarify the relationship between the influence of boundary terrain on the wind flow,a control group of horizontal terrain is constructed.The simulation results show that the wind flow is mainly influenced by the terrain.The highest elevation of the upstream and downstream boundary terrains affects the basic wind speed.The upstream boundary terrain has a greater impact on wind flow than the downstream boundary terrain.In addition,the wind speed profile index obtained by numerical simulation is smaller than the actual index for the wind from south.Therefore,the wind speed at the upper level(about 100 m)obtained by inversion based on the measured wind speed at the bottom(about 10 m)is also smaller than the actual wind speed.展开更多
基金This work was supported by the Project funded by China Postdoctoral Science Foundation under Grant 2019M651081the Merit Funding for the Returned Overseas Personnel Sci-Tech Activities of Shanxi Province under Grant 2016 and Key Research and Development Program of Shanxi(2019)and Innovation Programs of Higher Education Institutions in Shanxi(2019L0305).
文摘A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.
基金Supported by the 863 Project under Grant No.2008AA092301the Fundamental Research Foundation of Harbin Engineering University under Grant No.2007001
文摘S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.
基金Projects(50909025,51179035) supported by the National Natural Science Foundation of ChinaProject(HEUCFZ1003) supported by the Fundamental Research Funds for Central Universities of China
文摘Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 50528707 and 50537020).
文摘The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as a mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion. In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathodc under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the mode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the a mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.
文摘In this paper, the bit error rate (BER) performance for typical mobile radio channels is simulated and analyzed based on a tapped delay line model. The investigation is focused on the propagation environments determined by the average delay profile and the Doppler spectra. The profile characteristics and their influences on channel behavior are also examined.
文摘In radar system simulation,the reliability of simulation results depends not only on radar and target models,but also on radio frequency (RF) environment models,including clutter,multipath,diffraction,atmosphere refraction and attenuation.In traditional radar function simulation,all of these factors are grouped into a single pattern-propagation factor and can only give limited information for radar models.In signal-level simulation,radar models require simulated echoes should include information such as delay,doppler frequency,polarization,etc.By discussing and analyzing the principles and algorithms of RF environment effects (clutter,multipath,diffraction,atmosphere refraction and attenuation),this paper is supposed to provide a general RF environment model in signal-level.Algorithms for the Weibull clutter with Gaussian power spectral density (PSD) is discussed;A standard multipath and diffraction algorithm is analyzed,and the spherical earth and knife edge(SEKE)diffraction algorithm is introduced;The ray-tracing algorithm and the effective earth model are discussed;Algorithms for the absorption of oxygen and vapor are introduced;For certain algorithms,some practical advice is given.Finally,an object-oriented RF environment effects model is implemented,which has been dedicatedly designed for signal-level simulations and can provide relatively authentic simulated RF environment for the signal-level simulation of radar systems.Two simulation examples including clutter model and multipath and diffraction model are carried out and analyzed.
基金supported by the National SKA Program of China(2020SKA0110300)the Joint Research Fund in Astronomy(U1831204,U1931141)under cooperative agreement between the National Natural Science Foundation of China(NSFC)and the Chinese Academy of Sciences(CAS)+3 种基金the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(11961141001)the National Science Foundation for Young Scholars(11903009)supported by the Astronomical Big Data Joint Research Centerco-founded by National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloud。
文摘The Square Kilometre Array(SKA)is the largest radio interferometer under construction in the world.Its immense amount of visibility data poses a considerable challenge to the subsequent processing by the science data processor(SDP).Baseline dependent averaging(BDA),which reduces the amount of visibility data based on the baseline distribution of the radio interferometer,has become a focus of SKA SDP development.This paper developed and implemented a full-featured BDA module based on Radio Astronomy Simulation,Calibration and Imaging Library(RASCIL).Simulated observations were then performed with RASCIL based on a full-scale SKA1-LOW configuration.The performance of the BDA was systematically investigated and evaluated based on the simulated data.The experimental results confirmed that the amount of visibility data is reduced by about 50%to 85%for different time intervals(Δt_(max)).In addition,differentΔt_(max)have a significant effect on the imaging quality.The smallerΔt_(max)is,the smaller the degradation of imaging quality.
文摘首先介绍了射频识别(Rad io Frequency Identification,RFID)系统的工作原理,阐述了系统的结构和模块划分;在此基础上使用Matlab/Simulink对RFID系统进行了模型设计;最后,利用此模型对系统进行了实验仿真,并具体分析了码间干扰和调制深度对整个系统性能的影响。
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716006,10902006)
文摘Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods are mostly used in previous aeroservoelastic studies.However,series of assumptions and simplification on structures,aerodynamics and flight control systems are unavoidably introduced,and various nonlinear factors are also ignored,therefore,they result in considerable errors.A novel method called aeroservoelasticity semi-physical simulation test is proposed in this paper,which takes the flexible missile with control system as the test object.Vibration signals at several locations of the missile are measured by accelerometers,then corresponding unsteady aerodynamics is computed based on the fact that airflow at high Mach is nearly quasi-steady,and finally unsteady aerodynamics is exerted simultaneously by shakers at certain locations of the missile.The aeroservoelasticity semi-physical simulation test system can be constructed after the control system is closed.Open loop transfer function test and closed loop stability test are carried out in sequence.The test principle and method proposed in this paper are verified by the concordance between the results of numerical simulation and experiment.
基金supported by National Natural Science Foundation of China(No.11375107)Independent Innovation Foundation of Shandong University of China(No.2012TS067)
文摘In atmospheric radio-frequency (rf) discharges, the plasma parameters, such as electron density, sheath thickness and sheath voltage, are not easy to be probed experimentally, while the electrical characteristics, such as impedance, resistance and reactance, are relatively convenient to be measured. In this paper we presented a simple theoretical model derived from the fluid description of generated plasmas without considering the circuit model, to investigate the relationship between the plasma impedance and plasma parameters. By introducing a relaxation frequency, the plasma impedance could be predicted by formulas presented in this study, and the mean electron density and sheath thickness can also be calculated from the measured or simulated impedance and reactance, respectively.
基金supported by National Natural Science Foundation of China (Nos. 10835004, 10905010)Shanghai Shuguang Program (No. 08SG31)the Fundamental Research Funds for the Central Universities of China
文摘A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64:t=4 cm-lTorr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.
基金supported by National Natural Science Foundation of China (No. 11505089)
文摘In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to- argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.
基金supported by National Natural Science Foundation of China(No.11375107)the Fundamental Research Funds of Shandong University of China(No.2012TS067)
文摘In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.
文摘This paper proposes a dynamic channel allocation scheme based on cognitive radio (CR). Firstly, the channel probing based on MMSE criterion is implemented, with which the probability distribution of channels in use by the primary user is given. Next, take the distances between the CR users and the primary user as basis to stratify the CR users, among the layers; the simulated annealing (SA) algorithm is used to implement the channel assigmnent. This algorithm differs from the well-known 0-1 matrix based allocation scheme, and keeps a good tradeoff between complexity, capacity as well as the fairness problems. The simulation results show that this algorithm can improve the allocation efficiency effectively.
基金supported by the National Natural Science Foundation of China(No.12103083)the Natural Science Foundation of Xinjiang Autonomous(No.2022D01E85)+4 种基金the Youth Innovation Promotion Association,CAS(No.Y202019)the National Natural Science Foundation of China 12273102)the National Key Research and Development Program of China(No.2021YFC2203601)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(grant no.PTYQ2022YZZD01)。
文摘The wind environment of a site is one of the important factors affecting the observation performance of large aperture and high-performance radio telescopes.Exploring the relationship between the effects of different terrains on wind flow is important to optimize the wind environment of the site.The terrain of the Qitai radio telescope(QTT)site located in east Tianshan Mountains at an elevation of about 1800 m was used to study the wind flow in the adjacent zone of antenna based on numerical simulation.The area from 600m south to 600m north of the antenna is defined as the antenna adjacent zone,and three groups of boundaries with different terrains are set up upstream and downstream,respectively.Since the zone where the antenna is located is a slope terrain,in order to verify the influence of terrain on the wind flow and to clarify the relationship between the influence of boundary terrain on the wind flow,a control group of horizontal terrain is constructed.The simulation results show that the wind flow is mainly influenced by the terrain.The highest elevation of the upstream and downstream boundary terrains affects the basic wind speed.The upstream boundary terrain has a greater impact on wind flow than the downstream boundary terrain.In addition,the wind speed profile index obtained by numerical simulation is smaller than the actual index for the wind from south.Therefore,the wind speed at the upper level(about 100 m)obtained by inversion based on the measured wind speed at the bottom(about 10 m)is also smaller than the actual wind speed.