Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can b...Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.展开更多
Owing to the immobility of traditional reactors and spallation neutron sources,the demand for compact thermal neutron radiography(CTNR)based on accelerator neutron sources has rapidly increased in industrial applicati...Owing to the immobility of traditional reactors and spallation neutron sources,the demand for compact thermal neutron radiography(CTNR)based on accelerator neutron sources has rapidly increased in industrial applications.Recently,thermal neutron radiography experiments based on a D-T neutron generator performed by Hefei Institutes of Physical Science indicated a significant resolution deviation between the experimental results and the values calculated using the traditional resolution model.The experimental result was up to 23%lower than the calculated result,which hinders the achievement of the design goal of a compact neutron radiography system.A GEANT4 Monte Carlo code was developed to simulate the CTNR process,aiming to identify the key factors leading to resolution deviation.The effects of a low collimation ratio and high-energy neutrons were analyzed based on the neutron beam environment of the CTNR system.The results showed that the deviation was primarily caused by geometric distortion at low collimation ratios and radiation noise induced by highenergy neutrons.Additionally,the theoretical model was modified by considering the imaging position and radiation noise factors.The modified theoretical model was in good agreement with the experimental results,and the maximum deviation was reduced to 4.22%.This can be useful for the high-precision design of CTNR systems.展开更多
Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal...Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.展开更多
Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the result...Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the resulting neutron radiographic images inevitably exhibit multiple distortions,including noise,geometric unsharpness,and white spots.Furthermore,these distortions are particularly significant in compact neutron radiography systems with low neutron fluxes.Therefore,in this study,we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve the quality of degraded neutron radiographic images.Real neutron radiographic image datasets with various types and levels of distortion were built for the first time as multi-distortion suppression datasets.Thereafter,the coordinate attention mechanism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract relationship between ideally clear and degraded images.Extensive experiments were performed;the results show that the proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-theart perceptual visual quality,thus demonstrating its application potential in neutron radiography.展开更多
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a...Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented.展开更多
We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and tempora...We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and temporal evolution of the head-on colliding plasma from the two compressing cones in the DCI experiments. The influence of laser parameters on the x-ray backlighter intensity and spatial resolution of the imaging system was investigated. The imaging system had a spatial resolution of 10 μm when employing a CCD detector. Experiments demonstrated that the system can obtain time-resolved radiographic images with high quality, enabling the precise measurement of the shape, size, and density distribution of the plasma.展开更多
Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teachi...Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teaching a model how to learn.Algorithms for meta-learning are typically trained on a collection of training problems,each of which has a limited number of labelled instances.Multiple Xray classification tasks,including the detection of pneumonia,coronavirus disease 2019,and other disorders,have demonstrated the effectiveness of meta-learning.Meta-learning has the benefit of allowing models to be trained on dental X-ray datasets that are too few for more conventional machine learning methods.Due to the high cost and lengthy collection process associated with dental imaging datasets,this is significant for dental X-ray classification jobs.The ability to train models that are more resistant to fresh input is another benefit of meta-learning.展开更多
文摘Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.
基金supported by the Nuclear Energy Development Project of China (No.[2019]1342)the Presidential Foundation of HFIPS (No.YZJJ2022QN40)。
文摘Owing to the immobility of traditional reactors and spallation neutron sources,the demand for compact thermal neutron radiography(CTNR)based on accelerator neutron sources has rapidly increased in industrial applications.Recently,thermal neutron radiography experiments based on a D-T neutron generator performed by Hefei Institutes of Physical Science indicated a significant resolution deviation between the experimental results and the values calculated using the traditional resolution model.The experimental result was up to 23%lower than the calculated result,which hinders the achievement of the design goal of a compact neutron radiography system.A GEANT4 Monte Carlo code was developed to simulate the CTNR process,aiming to identify the key factors leading to resolution deviation.The effects of a low collimation ratio and high-energy neutrons were analyzed based on the neutron beam environment of the CTNR system.The results showed that the deviation was primarily caused by geometric distortion at low collimation ratios and radiation noise induced by highenergy neutrons.Additionally,the theoretical model was modified by considering the imaging position and radiation noise factors.The modified theoretical model was in good agreement with the experimental results,and the maximum deviation was reduced to 4.22%.This can be useful for the high-precision design of CTNR systems.
基金Project(51001074)supported by the National Natural Science Foundation of ChinaProject(12ZR1414500)supported by Shanghai Municipal Natural Science Fund of ChinaProject(2012CB619505)supported by the National Basic Research Program of China
文摘Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.
基金supported by National Natural Science Foundation of China(Nos.11905028,12105040)Scientific Research Project of Education Department of Jilin Province(No.JJKH20231294KJ)。
文摘Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the resulting neutron radiographic images inevitably exhibit multiple distortions,including noise,geometric unsharpness,and white spots.Furthermore,these distortions are particularly significant in compact neutron radiography systems with low neutron fluxes.Therefore,in this study,we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve the quality of degraded neutron radiographic images.Real neutron radiographic image datasets with various types and levels of distortion were built for the first time as multi-distortion suppression datasets.Thereafter,the coordinate attention mechanism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract relationship between ideally clear and degraded images.Extensive experiments were performed;the results show that the proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-theart perceptual visual quality,thus demonstrating its application potential in neutron radiography.
文摘Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented.
基金Project supported by the staff of the Shenguang-Ⅱ upgrade Laser facilityThis study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25010100,XDA25010300,XDA25030100,XDA25030200,and XDA25051000)+2 种基金the National Natural Science Foundation of China(Grant Nos.11827807 and 12105359)the Open Foundation of Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences(Grant No.SGKF202105)the Chinese Academy of Sciences Youth Interdisciplinary Team(Grant No.JCTD-2022-05).
文摘We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and temporal evolution of the head-on colliding plasma from the two compressing cones in the DCI experiments. The influence of laser parameters on the x-ray backlighter intensity and spatial resolution of the imaging system was investigated. The imaging system had a spatial resolution of 10 μm when employing a CCD detector. Experiments demonstrated that the system can obtain time-resolved radiographic images with high quality, enabling the precise measurement of the shape, size, and density distribution of the plasma.
文摘Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teaching a model how to learn.Algorithms for meta-learning are typically trained on a collection of training problems,each of which has a limited number of labelled instances.Multiple Xray classification tasks,including the detection of pneumonia,coronavirus disease 2019,and other disorders,have demonstrated the effectiveness of meta-learning.Meta-learning has the benefit of allowing models to be trained on dental X-ray datasets that are too few for more conventional machine learning methods.Due to the high cost and lengthy collection process associated with dental imaging datasets,this is significant for dental X-ray classification jobs.The ability to train models that are more resistant to fresh input is another benefit of meta-learning.