期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Robust Radiometric Normalization of the near Equatorial Satellite Images Using Feature Extraction and Remote Sensing Analysis 被引量:1
1
作者 Hayder Dibs Shattri Mansor +1 位作者 Noordin Ahmad Nadhir Al-Ansari 《Engineering(科研)》 CAS 2023年第2期75-89,共15页
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ... Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively. 展开更多
关键词 Relative radiometric normalization Scale Invariant Feature Transform Automatically Extraction Control Points Sum of Absolute Difference
下载PDF
Support vector machine regression(SVR)-based nonlinear modeling of radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization(RRN) 被引量:1
2
作者 Jing Geng Wenxia Gan +2 位作者 Jinying Xu Ruqin Yang Shuliang Wang 《Geo-Spatial Information Science》 SCIE CSCD 2020年第3期237-247,I0004,共12页
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ... Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance. 展开更多
关键词 Support Vector machine Regression(SVR) non-linear radiometric transforming relation Relative radiometric normalization(RRN) multi-source data
原文传递
Radiometric normalization of overlapping LiDAR intensity data for reduction of striping noise
3
作者 Wai Yeung Ahmed Shaker 《International Journal of Digital Earth》 SCIE EI CSCD 2016年第7期649-661,共13页
Airborne LiDAR data are usually collected with partially overlapping strips in order to serve a seamless and fine resolution mapping purpose.One of the factors limiting the use of intensity data is the presence of str... Airborne LiDAR data are usually collected with partially overlapping strips in order to serve a seamless and fine resolution mapping purpose.One of the factors limiting the use of intensity data is the presence of striping noise found in the overlapping region.Though recent researches have proposed physical and empirical approaches for intensity data correction,the effect of striping noise has not yet been resolved.This paper presents a radiometric normalization technique to normalize the intensity data from one data strip to another one with partial overlap.The normalization technique is built based on a second-order polynomial function fitted on the joint histogram plot,which is generated with a set of pairwise closest data points identified within the overlapping region.The proposed method was tested with two individual LiDAR datasets collected by Teledyne Optech’s Gemini(1064 nm)and Orion(1550 nm)sensors.The experimental results showed that radiometric correction and normalization can significantly reduce the striping noise found in the overlapping LiDAR intensity data and improve its capability in land cover classification.The coefficient of variation of five selected land cover features was reduced by 19–65%,where a 9–18%accuracy improvement was achieved in different classification scenarios.With the proven capability of the proposed method,both radiometric correction and normalization should be applied as a pre-processing step before performing any surface classification and object recognition. 展开更多
关键词 LiDAR intensity striping noise radiometric correction radiometric normalization joint histogram land cover classification
原文传递
Improved seeded region growing for detection of water bodies in aerial images
4
作者 Jun Pan Mi Wang 《Geo-Spatial Information Science》 SCIE EI CSCD 2016年第1期1-8,共8页
In aerial images,near-specular and specular reflection often appear in water bodies.They often lead to irregular brightness or color changes in water bodies and even produce hot spots,harmful to radiometric normalizat... In aerial images,near-specular and specular reflection often appear in water bodies.They often lead to irregular brightness or color changes in water bodies and even produce hot spots,harmful to radiometric normalization.Therefore,water bodies must be eliminated when calculating radiometric differences during radiometric normalization of aerial images.In this paper,a simple method to detect water bodies in aerial images based on texture features is presented,an improved seeded region growing(SRG)method.A texture feature is calculated using the relative standard deviation index(RSDI)and a coarse-to-fine procedure is employed.The proposed method includes a multiple partition strategy and a refinement in gradient image that improves the reliability and accuracy of water body detection.By fusing water bodies detected in multiple images,hot spots in these water bodies are also detected.Experiments validate the feasibility and effectiveness of the proposed method. 展开更多
关键词 aerial images WATER specular reflection hot spots radiometric normalization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部