Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ...Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.展开更多
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ...Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance.展开更多
Airborne LiDAR data are usually collected with partially overlapping strips in order to serve a seamless and fine resolution mapping purpose.One of the factors limiting the use of intensity data is the presence of str...Airborne LiDAR data are usually collected with partially overlapping strips in order to serve a seamless and fine resolution mapping purpose.One of the factors limiting the use of intensity data is the presence of striping noise found in the overlapping region.Though recent researches have proposed physical and empirical approaches for intensity data correction,the effect of striping noise has not yet been resolved.This paper presents a radiometric normalization technique to normalize the intensity data from one data strip to another one with partial overlap.The normalization technique is built based on a second-order polynomial function fitted on the joint histogram plot,which is generated with a set of pairwise closest data points identified within the overlapping region.The proposed method was tested with two individual LiDAR datasets collected by Teledyne Optech’s Gemini(1064 nm)and Orion(1550 nm)sensors.The experimental results showed that radiometric correction and normalization can significantly reduce the striping noise found in the overlapping LiDAR intensity data and improve its capability in land cover classification.The coefficient of variation of five selected land cover features was reduced by 19–65%,where a 9–18%accuracy improvement was achieved in different classification scenarios.With the proven capability of the proposed method,both radiometric correction and normalization should be applied as a pre-processing step before performing any surface classification and object recognition.展开更多
In aerial images,near-specular and specular reflection often appear in water bodies.They often lead to irregular brightness or color changes in water bodies and even produce hot spots,harmful to radiometric normalizat...In aerial images,near-specular and specular reflection often appear in water bodies.They often lead to irregular brightness or color changes in water bodies and even produce hot spots,harmful to radiometric normalization.Therefore,water bodies must be eliminated when calculating radiometric differences during radiometric normalization of aerial images.In this paper,a simple method to detect water bodies in aerial images based on texture features is presented,an improved seeded region growing(SRG)method.A texture feature is calculated using the relative standard deviation index(RSDI)and a coarse-to-fine procedure is employed.The proposed method includes a multiple partition strategy and a refinement in gradient image that improves the reliability and accuracy of water body detection.By fusing water bodies detected in multiple images,hot spots in these water bodies are also detected.Experiments validate the feasibility and effectiveness of the proposed method.展开更多
文摘Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.
基金This research was funded by the National Natural Science Fund of China[grant number 41701415]Science fund project of Wuhan Institute of Technology[grant number K201724]Science and Technology Development Funds Project of Department of Transportation of Hubei Province[grant number 201900001].
文摘Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance.
基金The research was supported by the Natural Sciences and Engineering Research Council of Canada[RGPIN-2015-03960].
文摘Airborne LiDAR data are usually collected with partially overlapping strips in order to serve a seamless and fine resolution mapping purpose.One of the factors limiting the use of intensity data is the presence of striping noise found in the overlapping region.Though recent researches have proposed physical and empirical approaches for intensity data correction,the effect of striping noise has not yet been resolved.This paper presents a radiometric normalization technique to normalize the intensity data from one data strip to another one with partial overlap.The normalization technique is built based on a second-order polynomial function fitted on the joint histogram plot,which is generated with a set of pairwise closest data points identified within the overlapping region.The proposed method was tested with two individual LiDAR datasets collected by Teledyne Optech’s Gemini(1064 nm)and Orion(1550 nm)sensors.The experimental results showed that radiometric correction and normalization can significantly reduce the striping noise found in the overlapping LiDAR intensity data and improve its capability in land cover classification.The coefficient of variation of five selected land cover features was reduced by 19–65%,where a 9–18%accuracy improvement was achieved in different classification scenarios.With the proven capability of the proposed method,both radiometric correction and normalization should be applied as a pre-processing step before performing any surface classification and object recognition.
基金This work was supported by the National Basic Research Program of China(973 Program)[grant number 2012CB719901]the National Natural Science Foundation of China(grant number 91438112)the Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD)[grant number 201249].
文摘In aerial images,near-specular and specular reflection often appear in water bodies.They often lead to irregular brightness or color changes in water bodies and even produce hot spots,harmful to radiometric normalization.Therefore,water bodies must be eliminated when calculating radiometric differences during radiometric normalization of aerial images.In this paper,a simple method to detect water bodies in aerial images based on texture features is presented,an improved seeded region growing(SRG)method.A texture feature is calculated using the relative standard deviation index(RSDI)and a coarse-to-fine procedure is employed.The proposed method includes a multiple partition strategy and a refinement in gradient image that improves the reliability and accuracy of water body detection.By fusing water bodies detected in multiple images,hot spots in these water bodies are also detected.Experiments validate the feasibility and effectiveness of the proposed method.