Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of...Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fi'acture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation aider frac- ture and percentage reduction of area) and the toughness indices (Charpy impact energy Ak and plane-strain fracture toughness Kic) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger Ak and Klc values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.展开更多
There currently does not exist in industry a reliable method for the detection of rail foot flaws.Like their head-based counterparts,foot flaws result in broken rail with potentially catastrophic consequences.A propos...There currently does not exist in industry a reliable method for the detection of rail foot flaws.Like their head-based counterparts,foot flaws result in broken rail with potentially catastrophic consequences.A proposed area of research for the detection of these flaws is thermography,a non-contact method of measuring and analysing infrared emissions from an object under test.In industry,active excitation thermography is the most common,requiring an excitation source.This paper will present a temperature measurement system and a method of transient temperature extraction from the running rails for the effects of a passing train to evaluate heat transfer in the practical rail environment.The outcomes of these results will provide future direction in the development of a rail heat transfer model and determine if train passage provides enough active excitation for a thermography-based detection technique.展开更多
The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 30...The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 300℃, 350℃ and 400℃?before gas metal arc filling to simulate defects repair. Another sample, welded at room temperature (RT) with no preheat, was studied in comparison. The parent rail steel has ultimate strength, yield strength and strain to failure of 1146 MPa, 717 MPa and 9.3%, respectively. Optimum values of these properties for the welded rail steels were found to be 1023 MPa, 655 MPa and 4.7%, respectively, for the 200℃ preheat temperature. On this basis, the optimum weld efficiency was found to be 89.2%. The average apparent fracture toughness KI for the parent rail was 127 MPa.m0.5, while that for the optimum welded joint (200℃ preheat) was 116.5 MPa.m0.5. In addition, the average hardness values of the weld, fusion zone, and heat affected zone (HAZ) were 313.5, 332 and 313.6 HB, respectively, while that for parent rail steel was about 360 HB. Dominance of bainite and acicular ferrite phase in the weld microstructure was observed at 200℃ preheat.展开更多
For building the analytical model of mean temperature in rail universal rolling, the cross-section of workpieces and the profile of horizontal roll and vertical roll are simplified rationally. The mean temperature of ...For building the analytical model of mean temperature in rail universal rolling, the cross-section of workpieces and the profile of horizontal roll and vertical roll are simplified rationally. The mean temperature of the web of rail, the top of rail and the base of rail are considered individually. The temperature rises for plastic deformation and friction incorresponding deformation zone, the temperature drop for contact is calculated on the base of variation principle and energy conservation law. Then the mean temperature is obtained. For verifying the theoretical model, the 18 kg/m light rail universal rolling experiments are accomplished in Yanshan University Rolling Laboratory, China and the surface temperature is measured. The surface temperature is not exact enough to express the true temperature and the mean temperature can show the status of the true temperature basically. So the mean temperature can be used to express the true temperature and this theoretical model and its results can be applied as an important reference to control the temperature of rail universal rolling and the heat treatment of the rolled rail.展开更多
The text determines the hot plasticity of CC blank for heavy rail between BNbRE and BNbRE(V) under 1300~850 ℃ by using Gleeble 1500D. It also makes comparative analysis of the microstructure and fracture of the tens...The text determines the hot plasticity of CC blank for heavy rail between BNbRE and BNbRE(V) under 1300~850 ℃ by using Gleeble 1500D. It also makes comparative analysis of the microstructure and fracture of the tensile specimens by scanning electronic microscope. The result indicates that hot plasticity is almost zero when temperature is between 1200~1300 ℃. While hot plasticity of BNbRE(V) is better than BNbRE between 975~1200 ℃. Plasticity decreases with the reducing temperature from 975 ℃. Hot plasticity of BNbRE(V) reaches the minimum because of the precipitation of vanadium in the specimens reaches the maximum at 850 ℃.Vanadium largely affects the plasticity of steel in brittle temperature region Ⅲ and the embrittlement extends to lower temperature.展开更多
To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabric...To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabrication of samples with exceptional mechanical and friction properties.The results reveal that moderate incorporation(less 6%)of sepiolite provides a particle reinforcement effect,resulting in an improvement of mechanical properties.Interestingly,the addition of sepiolite causes a change in the traditional saddle-shaped friction curve due to high temperature lubrication.Meanwhile,the primary advantage of sepiolite lies in its superior abrasion resistance,evident in the increased friction coefficient and altered wear mechanisms with higher sepiolite content.The wear resistance is optimal at 200 Km/h(400℃).Particularly,the unique composition of the friction layer(outermost layer:a composite film consisting of B2O3,sepiolite,graphite,and metal oxide films;intermediate layer:metal oxide films)plays a pivotal role in improving friction stability.Finally,there are significant optimizations in the GA algorithm,especially GA-GB model has the best prediction effect on the maximum friction temperature.展开更多
A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force p...A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force presented by Carter is used. In order to obtain thermal-elastic stress, the ther-mal-elastic plane stress problem is transformed to an elastic plane stress problem with equivalent fictitious thermal body force and fictitious boundary distributed force. The temperature rise and ther-mal-elastic stress of wheel and rail in rolling-sliding are analyzed. The non-steady state heat transfer between the contact surfaces of wheel and rail, heat-convection and radiation between the wheel/rail and the ambient are taken into consideration. The influences of the wheel rolling speed and wear rate on friction temperature and thermal-elastic stress are investigated. The results show the following: ① For rolling-sliding case, the thermal stress in the thin layer near the contact patch due to the friction temperature rise is severe. The higher rolling speed leads to the lower friction temperature rise and thermal stress in the wheel; ② For sliding case, the friction temperature and thermal stress of the wheel rise quickly in the initial sliding stage, and then get into a steady state gradually. The expansion of the contact patch, due to material wear, can affect the friction temperature rise and the thermal stress during wear process. The higher wear rate generates lower stress. The results can help under-stand the influence of friction temperature and thermal-elastic stress on wheel and rail damage.展开更多
The U75V 60 kg/m heavy rail samples were heated to 900 ℃ in a resistance furnace for a fixed duration of 50 min. Under this condition, the samples were austenitized totally. Then, the samples were dragged out of furn...The U75V 60 kg/m heavy rail samples were heated to 900 ℃ in a resistance furnace for a fixed duration of 50 min. Under this condition, the samples were austenitized totally. Then, the samples were dragged out of furnace and cooled for 25 s in the open air. After that, the samples entered into the air spraying channel, and were cooled from the top and both sides by compressed air. During this period, main technical parameters were changed such as the distance between spray nozzles and surface of rail head, air pressure, air spraying time and air temperature. So under laboratory condition, optimal heat-treating parameters of U75V 60 kg/m heavy rail were determined as the distance between spray nozzles and surface of rail head of 15 mm, air pressure of 0.26 MPa, cooling time of 80 s, and air temperature of 28 ℃. The surface temperature at different positions of heavy rail was measured before and after heat treatment, and the temperature changing law was determined. The self tempering occurred on the surface of rail head after heat treatment, and the tempering temperature became the largest (about 3 min) after heat treatment, separately 528, 524 and 536 ℃ at the center, top fillet and bottom fillet of rail head. The heavy rail was cooled in open air after heat treatment; during this period, the temperature gap on the surface of heavy rail became smaller and smaller, and was reduced to zero when being cooled for 20 min.展开更多
基金supported by the Research Foundation of the Ministry of Railways and Tsinghua University (No.T200410)the National Natural Science Foundation of China (Nos.50778102 and 51178244)
文摘Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fi'acture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation aider frac- ture and percentage reduction of area) and the toughness indices (Charpy impact energy Ak and plane-strain fracture toughness Kic) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger Ak and Klc values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.
基金The work was supported by the Australasian Centre for Rail Innovation under its HH01B—Evaluating infrared imaging and laser ultrasonics as detectors of rail foot flaws project.
文摘There currently does not exist in industry a reliable method for the detection of rail foot flaws.Like their head-based counterparts,foot flaws result in broken rail with potentially catastrophic consequences.A proposed area of research for the detection of these flaws is thermography,a non-contact method of measuring and analysing infrared emissions from an object under test.In industry,active excitation thermography is the most common,requiring an excitation source.This paper will present a temperature measurement system and a method of transient temperature extraction from the running rails for the effects of a passing train to evaluate heat transfer in the practical rail environment.The outcomes of these results will provide future direction in the development of a rail heat transfer model and determine if train passage provides enough active excitation for a thermography-based detection technique.
文摘The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 300℃, 350℃ and 400℃?before gas metal arc filling to simulate defects repair. Another sample, welded at room temperature (RT) with no preheat, was studied in comparison. The parent rail steel has ultimate strength, yield strength and strain to failure of 1146 MPa, 717 MPa and 9.3%, respectively. Optimum values of these properties for the welded rail steels were found to be 1023 MPa, 655 MPa and 4.7%, respectively, for the 200℃ preheat temperature. On this basis, the optimum weld efficiency was found to be 89.2%. The average apparent fracture toughness KI for the parent rail was 127 MPa.m0.5, while that for the optimum welded joint (200℃ preheat) was 116.5 MPa.m0.5. In addition, the average hardness values of the weld, fusion zone, and heat affected zone (HAZ) were 313.5, 332 and 313.6 HB, respectively, while that for parent rail steel was about 360 HB. Dominance of bainite and acicular ferrite phase in the weld microstructure was observed at 200℃ preheat.
基金supported by National Natural Science Foundation of China (Grant No. 50775196)Doctor Foundation of Ministry of Education of China (Grant No. 20070216006)Special Sponsored Item of Hebei Provincial Natural Science Foundation of China (Grant No. 08B017)
文摘For building the analytical model of mean temperature in rail universal rolling, the cross-section of workpieces and the profile of horizontal roll and vertical roll are simplified rationally. The mean temperature of the web of rail, the top of rail and the base of rail are considered individually. The temperature rises for plastic deformation and friction incorresponding deformation zone, the temperature drop for contact is calculated on the base of variation principle and energy conservation law. Then the mean temperature is obtained. For verifying the theoretical model, the 18 kg/m light rail universal rolling experiments are accomplished in Yanshan University Rolling Laboratory, China and the surface temperature is measured. The surface temperature is not exact enough to express the true temperature and the mean temperature can show the status of the true temperature basically. So the mean temperature can be used to express the true temperature and this theoretical model and its results can be applied as an important reference to control the temperature of rail universal rolling and the heat treatment of the rolled rail.
文摘The text determines the hot plasticity of CC blank for heavy rail between BNbRE and BNbRE(V) under 1300~850 ℃ by using Gleeble 1500D. It also makes comparative analysis of the microstructure and fracture of the tensile specimens by scanning electronic microscope. The result indicates that hot plasticity is almost zero when temperature is between 1200~1300 ℃. While hot plasticity of BNbRE(V) is better than BNbRE between 975~1200 ℃. Plasticity decreases with the reducing temperature from 975 ℃. Hot plasticity of BNbRE(V) reaches the minimum because of the precipitation of vanadium in the specimens reaches the maximum at 850 ℃.Vanadium largely affects the plasticity of steel in brittle temperature region Ⅲ and the embrittlement extends to lower temperature.
基金the National Key Research and Development Program of China(Grant No.2021YFB3703803)National Natural Science Foundation of China(Grant No.52075555)for their financial support.
文摘To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabrication of samples with exceptional mechanical and friction properties.The results reveal that moderate incorporation(less 6%)of sepiolite provides a particle reinforcement effect,resulting in an improvement of mechanical properties.Interestingly,the addition of sepiolite causes a change in the traditional saddle-shaped friction curve due to high temperature lubrication.Meanwhile,the primary advantage of sepiolite lies in its superior abrasion resistance,evident in the increased friction coefficient and altered wear mechanisms with higher sepiolite content.The wear resistance is optimal at 200 Km/h(400℃).Particularly,the unique composition of the friction layer(outermost layer:a composite film consisting of B2O3,sepiolite,graphite,and metal oxide films;intermediate layer:metal oxide films)plays a pivotal role in improving friction stability.Finally,there are significant optimizations in the GA algorithm,especially GA-GB model has the best prediction effect on the maximum friction temperature.
基金This project is supported by National Natural Science Foundation of China (No. 50375129)Foundation for Author of National Excellent Doctoral Dis-sertation of China (FANEDD) (No. 200248)Program for Changjiang Scholars and Innovative Research Team in University, China (No. IRT0452).
文摘A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force presented by Carter is used. In order to obtain thermal-elastic stress, the ther-mal-elastic plane stress problem is transformed to an elastic plane stress problem with equivalent fictitious thermal body force and fictitious boundary distributed force. The temperature rise and ther-mal-elastic stress of wheel and rail in rolling-sliding are analyzed. The non-steady state heat transfer between the contact surfaces of wheel and rail, heat-convection and radiation between the wheel/rail and the ambient are taken into consideration. The influences of the wheel rolling speed and wear rate on friction temperature and thermal-elastic stress are investigated. The results show the following: ① For rolling-sliding case, the thermal stress in the thin layer near the contact patch due to the friction temperature rise is severe. The higher rolling speed leads to the lower friction temperature rise and thermal stress in the wheel; ② For sliding case, the friction temperature and thermal stress of the wheel rise quickly in the initial sliding stage, and then get into a steady state gradually. The expansion of the contact patch, due to material wear, can affect the friction temperature rise and the thermal stress during wear process. The higher wear rate generates lower stress. The results can help under-stand the influence of friction temperature and thermal-elastic stress on wheel and rail damage.
文摘The U75V 60 kg/m heavy rail samples were heated to 900 ℃ in a resistance furnace for a fixed duration of 50 min. Under this condition, the samples were austenitized totally. Then, the samples were dragged out of furnace and cooled for 25 s in the open air. After that, the samples entered into the air spraying channel, and were cooled from the top and both sides by compressed air. During this period, main technical parameters were changed such as the distance between spray nozzles and surface of rail head, air pressure, air spraying time and air temperature. So under laboratory condition, optimal heat-treating parameters of U75V 60 kg/m heavy rail were determined as the distance between spray nozzles and surface of rail head of 15 mm, air pressure of 0.26 MPa, cooling time of 80 s, and air temperature of 28 ℃. The surface temperature at different positions of heavy rail was measured before and after heat treatment, and the temperature changing law was determined. The self tempering occurred on the surface of rail head after heat treatment, and the tempering temperature became the largest (about 3 min) after heat treatment, separately 528, 524 and 536 ℃ at the center, top fillet and bottom fillet of rail head. The heavy rail was cooled in open air after heat treatment; during this period, the temperature gap on the surface of heavy rail became smaller and smaller, and was reduced to zero when being cooled for 20 min.