Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep ...Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.展开更多
Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle ...Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising.展开更多
Interest in hydrogen-powered rail vehicles has gradually increased worldwide over recent decades due to the global pressure on reduction in greenhouse gas emissions,technology availability,and multiple options of powe...Interest in hydrogen-powered rail vehicles has gradually increased worldwide over recent decades due to the global pressure on reduction in greenhouse gas emissions,technology availability,and multiple options of power supply.In the past,research and development have been primarily focusing on light rail and regional trains,but the interest in hydrogen-powered freight and heavy haul trains is also growing.The review shows that some technical feasibility has been demonstrated from the research and experiments on proof-of-concept designs.Several rail vehicles powered by hydrogen either are currently operating or are the subject of experimental programmes.The paper identifies that fuel cell technology is well developed and has obvious application in providing electrical traction power,while hydrogen combustion in traditional IC engines and gas turbines is not yet well developed.The need for on-board energy storage is discussed along with the benefits of energy management and control systems.展开更多
A new type of thin-walled circular tubes(CTs),which is inspired by the bamboo with highly-efficient energy absorption(EA)capability,was proposed and designed for the potential application of the energy absorber of rai...A new type of thin-walled circular tubes(CTs),which is inspired by the bamboo with highly-efficient energy absorption(EA)capability,was proposed and designed for the potential application of the energy absorber of rail vehicles in this study.And then,the axial crushing behavior and crashworthiness of the bamboo-inspired bionic tube(BT)were experimentally and numerically investigated,compared with the single CT and foam-filled tube(FT).The typical crushing responses(e.g.,deformation mode,load-displacement response,energy absorption,and strain distribution)and quantitative crashworthiness indicators(EA,SEA,FP,Fm,and CFE)of these three types of CTs were presented and discussed.Effects of impact velocity and foam relative density on the crashworthiness of tested tubes were also explored.The experimental and simulation results show that the BT specimen exhibits the best capability of load-carrying,energy absorption,and crashworthiness among three types of tubes.Compared with the CT specimen,the EA value of BT specimens increased by 93.1%,while the corresponding Fm value raised from 74.2 kN to 143.4 kN.展开更多
A health status assessment method based on cross entropy and support vector machine(SVM)is proposed for the new urban rail vehicle traction systems.First,an index system for health assessment of the traction system is...A health status assessment method based on cross entropy and support vector machine(SVM)is proposed for the new urban rail vehicle traction systems.First,an index system for health assessment of the traction system is established,and combined weights of the index layer are obtained via cross entropy.Then,an SVM assessment model considering actual operating data and each status level of the traction system is established.Finally,the model is simulated in Matlab to obtain assessment results.The results indicate that the proposed method can provide the health status information of the traction system intuitively and complete the health status assessment of the traction system of the new urban rail vehicle effectively,by exploiting the traction system’s layered analysis model.The health status can be assessed accurately and reliably by adopting the cross entropy theory and SVM theory.展开更多
With the rapid development and application of cloud computing,big data,artificial intelligence,5G,satellite communication,blockchain and other emerging information technologies,conditions have been provided for the in...With the rapid development and application of cloud computing,big data,artificial intelligence,5G,satellite communication,blockchain and other emerging information technologies,conditions have been provided for the intelligent development of urban rail vehicles.With the development of smart urban rail vehicles,the standards system of traditional urban rail vehicle cannot meet the development requirements,so it is necessary to study and reconstruct the standards system.To embody the intelligent level of urban rail vehicles,the paper conducts the research on the standards for the urban rail vehicle train control system,monitoring and diagnosis system,passenger service system,and then proposes the overall architecture and standard list of smart city rail vehicle technical standards system,providing reference for the planning and establishment of China's smart city rail standards system.展开更多
With the rapid development and application of emerging information technologies such as cloud computing,big data,artificial intelligence,5G,satellite communication,and blockchain in urban rail transit,China’s urban r...With the rapid development and application of emerging information technologies such as cloud computing,big data,artificial intelligence,5G,satellite communication,and blockchain in urban rail transit,China’s urban rail transit has entered an era of intelligent transformation and upgrading.The development of intelligent systems and the construction of smart urban rail transit have formed a consensus in the industry.The electromechanical system is an important component of urban rail transit engineering,covering power supply stations,vehicles,stations,and lines.The depot and control center are important support for promoting the development of urban rail transit towards informatization and intelligence.However,research on the technical standards for the smart urban rail vehicle-ground integrated electromechanical system has just begun,and a technical standards system has not yet been formed,which cannot better support the electromechanical system.Therefore,it is necessary to conduct research on the technical standards system,propose the common criteria structure and standards list of the standards system,which can provide reference and guidance for the planning and establishment of China’s smart urban rail standards system.展开更多
In the paper, a new derailment index λ for evaluation of wheel climb derailment is proposed which is based on primary suspension forces. It is easy to apply because of its minimum criterion characteristic and ca...In the paper, a new derailment index λ for evaluation of wheel climb derailment is proposed which is based on primary suspension forces. It is easy to apply because of its minimum criterion characteristic and can also be applied to explain the reason why wheel climb derailments are almost always accompanied by some wheel unloadings.展开更多
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel...The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.展开更多
In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamic...In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamics, the rigid-flexible coupled dynamic model of metro vehicle-track-LSCSB system is established by using finite element method and multi-rigid-body dynamics. Adopting this model, the deformation of LSCSB subject to temperature is analyzed, then the comprehensive effect of track random irregularity and rail deformation caused by temperature load is considered to study the dynamic characteristics of metro vehicle running through the bridge, and finally the influences of temperature increment and running speed on concerned dynamic indices of vehicle are studied. The results show that the LSCSB deforms obviously subject to temperature load, and the overall performance is that the cooling is arched, and the heating is bent, and the shape variable changes almost linearly with the temperature load. According to the parameters studied in this paper, the rail deformation caused by temperature load increases the wheel-rail vertical force, derailment coefficient and wheel load reduction rate by 1.5%, 3.1% and 5% respectively. The vertical acceleration of the vehicle body decreases by 2.4% under the cooling condition, while increases by 3.7% under the heating condition. The dynamic response of the bridge changes under temperature load. The maximum vertical and horizontal displacement in the middle of the main beam span are 6.24 mm and 2.19 mm respectively, and the maximum vertical and horizontal acceleration are 1.29 cm/s<sup>2</sup> and 2.54cm/s<sup>2</sup> respectively. The derailment coefficient and vertical acceleration of vehicle body are more affected by temperature load, and the wheel load reduction rate and wheel-rail vertical force are more affected by speed. The conclusion of this paper provides a reference for subsequent scholars to study the influence of thermal deformation on the dynamic response of vehicles on LSCSB.展开更多
Safety training and visual management are important tasks for production companies.In the railway vehicle maintenance industry,the tasks are particularly complex.Relevant national standards point out the direction for...Safety training and visual management are important tasks for production companies.In the railway vehicle maintenance industry,the tasks are particularly complex.Relevant national standards point out the direction for enterprise visual management,but they still require detailed research in order to combine with advanced information technology.This paper develops a system for safety training of railway vehicle maintenance based on virtual simulation technology,and conducts the application verification in a real world scenario,which is expected to provide reference for the standardization construction of enterprise visual management.展开更多
A near-term strategy to reduce emissions from rail vehicles,as a path to full electrification for maximal decarbonisation,is to partially electrify a route,with the remainder of the route requiring an additional self-...A near-term strategy to reduce emissions from rail vehicles,as a path to full electrification for maximal decarbonisation,is to partially electrify a route,with the remainder of the route requiring an additional self-powered traction option.These rail vehicles are usually powered by a diesel engine when not operating on electrified track and are referred to as bi-mode vehicles.This paper analyses the benefits of discontinuous electrification compared to continuous electrification using the CO_(2)estimates from a validated high-fidelity bi-mode(diesel-electric)rail vehicle model.This analysis shows that 50%discontinuous electrification provides a maximum of 54%reduction in operational CO_(2)emissions when compared to the same length of continuously electrified track.The highest emissions savings occurred when leaving train stations where vehicles must accelerate quickly to line speed.These results were used to develop a linear regression model for fast estimation of CO_(2)emissions from diesel running and electrification benefits.This model was able to estimate the CO_(2)emissions from a route to within 10%of that given by the high-fidelity model.Finally,additional considerations such as cost and the embodied CO_(2)in electrification infrastructure were analysed to provide a comparison between continuous and discontinuous electrification.Discontinuous electrification can cost up to 56%less per reduction in lifetime emissions than continuous electrification and can save up to 2.3 times more lifetime CO_(2)per distance electrified.展开更多
In order to study the influence of square-cone energy-absorbing structures on the mechanical behaviour of the ollision performance of the leading vehicle,a parameterization method for rapidly changing the performance ...In order to study the influence of square-cone energy-absorbing structures on the mechanical behaviour of the ollision performance of the leading vehicle,a parameterization method for rapidly changing the performance of energy-absorbing structures was proposed.Firstly,a finite element simulation model of the collision of the leading vehicle with a square-cone energy-absorbing structure was constructed.Then,the platform force,the slope of the platform force and the initial peak force of the force-displacement curve derived from the energy-absorbing structure were studied for the collision performance of the leading vehicle.Finally,the correlation model of the square-cone energy-absorbing structure and the mechanical behaviour of the collision performance of the leading vehicle was established by the response surface method.The results showed that the increase of the platform force of the energy-absorbing structure can effectively buffer the longitudinal impact of the train and reduce the nodding attitude of the train.The increase of the platform force slope can not only effectively buffer the longitudinal impact and vertical nodding of the train,but also reduce the lateral swing of the train.An increase in the initial peak force to a certain extent may lead to a change in the deformation mode,thereby reducing the energy-absorption fficiency.The correlation model can guide the design of the square-cone energy-absorbing structure and predict the deformation attitude of the leading vehicle.展开更多
New industrial applications call for new methods and new ideas in signal analysis. Wavelet packets are new tools in industrial applications and they have just recently appeared in projects and patents. In training neu...New industrial applications call for new methods and new ideas in signal analysis. Wavelet packets are new tools in industrial applications and they have just recently appeared in projects and patents. In training neural networks, for the sake of dimensionality and of ratio of time, compact information is needed. This paper deals with simultaneous noise suppression and signal compression of quasi-harmonic signals. A quasi-harmonic signal is a signal with one dominant harmonic and some more sub harmonics in superposition. Such signals often occur in rail vehicle systems, in which noisy signals are present. Typically, they are signals which come from rail overhead power lines and are generated by intermodulation phenomena and radio interferences. An important task is to monitor and recognize them. This paper proposes an algorithm to differentiate discrete signals from their noisy observations using a library of nonorthonormal bases. The algorithm combines the shrinkage technique and techniques in regression analysis using Shannon Entropy function and Cross Entropy function to select the best discernable bases. Cosine and sine wavelet bases in wavelet packets are used. The algorithm is totally general and can be used in many industrial applications. The effectiveness of the proposed method consists of using as few as possible samples of the measured signal and in the meantime highlighting the difference between the noise and the desired signal. The problem is a difficult one, but well posed. In fact, compression reduces the level of the measured noise and undesired signals but introduces the well known compression noise. The goal is to extract a coherent signal from the measured signal which will be "well represented" by suitable waveforms and a noisy signal or incoherent signal which cannot be "compressed well" by the waveforms. Recursive residual iterations with cosine and sine bases allow the extraction of elements of the required signal and the noise. The algorithm that has been developed is utilized as a filter to extract features for training neural networks. It is currently integrated in the inferential modelling platform of the unit for Advanced Control and Simulation Solutions within ABB's industry division. An application using real measured data from an electrical railway line is presented to illustrate and analyze the effectiveness of the proposed method. Another industrial application in fault detection, in which coherent and incoherent signals are univocally visible, is also shown.展开更多
基金supported by Hunan Province Enterprise Technology Innovation and Entrepreneurship Team Support Program Project,Hunan Province Science and Technology Innovation Leading Talent Project[2023RC1088]Hunan Province Science and Technology Talent Support Project[2023TJ-Z10].
文摘Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.
文摘Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising.
文摘Interest in hydrogen-powered rail vehicles has gradually increased worldwide over recent decades due to the global pressure on reduction in greenhouse gas emissions,technology availability,and multiple options of power supply.In the past,research and development have been primarily focusing on light rail and regional trains,but the interest in hydrogen-powered freight and heavy haul trains is also growing.The review shows that some technical feasibility has been demonstrated from the research and experiments on proof-of-concept designs.Several rail vehicles powered by hydrogen either are currently operating or are the subject of experimental programmes.The paper identifies that fuel cell technology is well developed and has obvious application in providing electrical traction power,while hydrogen combustion in traditional IC engines and gas turbines is not yet well developed.The need for on-board energy storage is discussed along with the benefits of energy management and control systems.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12122211).
文摘A new type of thin-walled circular tubes(CTs),which is inspired by the bamboo with highly-efficient energy absorption(EA)capability,was proposed and designed for the potential application of the energy absorber of rail vehicles in this study.And then,the axial crushing behavior and crashworthiness of the bamboo-inspired bionic tube(BT)were experimentally and numerically investigated,compared with the single CT and foam-filled tube(FT).The typical crushing responses(e.g.,deformation mode,load-displacement response,energy absorption,and strain distribution)and quantitative crashworthiness indicators(EA,SEA,FP,Fm,and CFE)of these three types of CTs were presented and discussed.Effects of impact velocity and foam relative density on the crashworthiness of tested tubes were also explored.The experimental and simulation results show that the BT specimen exhibits the best capability of load-carrying,energy absorption,and crashworthiness among three types of tubes.Compared with the CT specimen,the EA value of BT specimens increased by 93.1%,while the corresponding Fm value raised from 74.2 kN to 143.4 kN.
基金Supported by the Basic Ability Improvement Project for Young and Middle-aged Teachers in Guangxi Province(2018KY1159).
文摘A health status assessment method based on cross entropy and support vector machine(SVM)is proposed for the new urban rail vehicle traction systems.First,an index system for health assessment of the traction system is established,and combined weights of the index layer are obtained via cross entropy.Then,an SVM assessment model considering actual operating data and each status level of the traction system is established.Finally,the model is simulated in Matlab to obtain assessment results.The results indicate that the proposed method can provide the health status information of the traction system intuitively and complete the health status assessment of the traction system of the new urban rail vehicle effectively,by exploiting the traction system’s layered analysis model.The health status can be assessed accurately and reliably by adopting the cross entropy theory and SVM theory.
基金the Major Science&Technology Development Project of China CRRC in 2022.Project number:2022CKA054。
文摘With the rapid development and application of cloud computing,big data,artificial intelligence,5G,satellite communication,blockchain and other emerging information technologies,conditions have been provided for the intelligent development of urban rail vehicles.With the development of smart urban rail vehicles,the standards system of traditional urban rail vehicle cannot meet the development requirements,so it is necessary to study and reconstruct the standards system.To embody the intelligent level of urban rail vehicles,the paper conducts the research on the standards for the urban rail vehicle train control system,monitoring and diagnosis system,passenger service system,and then proposes the overall architecture and standard list of smart city rail vehicle technical standards system,providing reference for the planning and establishment of China's smart city rail standards system.
文摘With the rapid development and application of emerging information technologies such as cloud computing,big data,artificial intelligence,5G,satellite communication,and blockchain in urban rail transit,China’s urban rail transit has entered an era of intelligent transformation and upgrading.The development of intelligent systems and the construction of smart urban rail transit have formed a consensus in the industry.The electromechanical system is an important component of urban rail transit engineering,covering power supply stations,vehicles,stations,and lines.The depot and control center are important support for promoting the development of urban rail transit towards informatization and intelligence.However,research on the technical standards for the smart urban rail vehicle-ground integrated electromechanical system has just begun,and a technical standards system has not yet been formed,which cannot better support the electromechanical system.Therefore,it is necessary to conduct research on the technical standards system,propose the common criteria structure and standards list of the standards system,which can provide reference and guidance for the planning and establishment of China’s smart urban rail standards system.
文摘In the paper, a new derailment index λ for evaluation of wheel climb derailment is proposed which is based on primary suspension forces. It is easy to apply because of its minimum criterion characteristic and can also be applied to explain the reason why wheel climb derailments are almost always accompanied by some wheel unloadings.
基金supported by the National Basic Research Program of China (Grant 2011CB711103)the National Natural Science Foundation of China (Grants U1134202,U1361117)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT1178)the 2014 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities
文摘The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.
文摘In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamics, the rigid-flexible coupled dynamic model of metro vehicle-track-LSCSB system is established by using finite element method and multi-rigid-body dynamics. Adopting this model, the deformation of LSCSB subject to temperature is analyzed, then the comprehensive effect of track random irregularity and rail deformation caused by temperature load is considered to study the dynamic characteristics of metro vehicle running through the bridge, and finally the influences of temperature increment and running speed on concerned dynamic indices of vehicle are studied. The results show that the LSCSB deforms obviously subject to temperature load, and the overall performance is that the cooling is arched, and the heating is bent, and the shape variable changes almost linearly with the temperature load. According to the parameters studied in this paper, the rail deformation caused by temperature load increases the wheel-rail vertical force, derailment coefficient and wheel load reduction rate by 1.5%, 3.1% and 5% respectively. The vertical acceleration of the vehicle body decreases by 2.4% under the cooling condition, while increases by 3.7% under the heating condition. The dynamic response of the bridge changes under temperature load. The maximum vertical and horizontal displacement in the middle of the main beam span are 6.24 mm and 2.19 mm respectively, and the maximum vertical and horizontal acceleration are 1.29 cm/s<sup>2</sup> and 2.54cm/s<sup>2</sup> respectively. The derailment coefficient and vertical acceleration of vehicle body are more affected by temperature load, and the wheel load reduction rate and wheel-rail vertical force are more affected by speed. The conclusion of this paper provides a reference for subsequent scholars to study the influence of thermal deformation on the dynamic response of vehicles on LSCSB.
文摘Safety training and visual management are important tasks for production companies.In the railway vehicle maintenance industry,the tasks are particularly complex.Relevant national standards point out the direction for enterprise visual management,but they still require detailed research in order to combine with advanced information technology.This paper develops a system for safety training of railway vehicle maintenance based on virtual simulation technology,and conducts the application verification in a real world scenario,which is expected to provide reference for the standardization construction of enterprise visual management.
基金gratefully acknowledge the finan-cial support of the EPSRC’s DTE Network+(EP/S032053/1)and the RSSB(COF-IPS-02).
文摘A near-term strategy to reduce emissions from rail vehicles,as a path to full electrification for maximal decarbonisation,is to partially electrify a route,with the remainder of the route requiring an additional self-powered traction option.These rail vehicles are usually powered by a diesel engine when not operating on electrified track and are referred to as bi-mode vehicles.This paper analyses the benefits of discontinuous electrification compared to continuous electrification using the CO_(2)estimates from a validated high-fidelity bi-mode(diesel-electric)rail vehicle model.This analysis shows that 50%discontinuous electrification provides a maximum of 54%reduction in operational CO_(2)emissions when compared to the same length of continuously electrified track.The highest emissions savings occurred when leaving train stations where vehicles must accelerate quickly to line speed.These results were used to develop a linear regression model for fast estimation of CO_(2)emissions from diesel running and electrification benefits.This model was able to estimate the CO_(2)emissions from a route to within 10%of that given by the high-fidelity model.Finally,additional considerations such as cost and the embodied CO_(2)in electrification infrastructure were analysed to provide a comparison between continuous and discontinuous electrification.Discontinuous electrification can cost up to 56%less per reduction in lifetime emissions than continuous electrification and can save up to 2.3 times more lifetime CO_(2)per distance electrified.
基金The authors would like to acknowledge financial support from the Changsha Municipal Natural Science Foundation(Grant No.kq2202102)the National Key Research and Development Program of China(Grant Nos.2021YFB3703801,2021YFB3703801-02)+1 种基金the Scientific Research Foundation for Young Scholars of Central South Univ ersity(Grant No.202044019)the Leading Talents of Science and Technology of Hunan Province(Grant No.2019RS3018)。
文摘In order to study the influence of square-cone energy-absorbing structures on the mechanical behaviour of the ollision performance of the leading vehicle,a parameterization method for rapidly changing the performance of energy-absorbing structures was proposed.Firstly,a finite element simulation model of the collision of the leading vehicle with a square-cone energy-absorbing structure was constructed.Then,the platform force,the slope of the platform force and the initial peak force of the force-displacement curve derived from the energy-absorbing structure were studied for the collision performance of the leading vehicle.Finally,the correlation model of the square-cone energy-absorbing structure and the mechanical behaviour of the collision performance of the leading vehicle was established by the response surface method.The results showed that the increase of the platform force of the energy-absorbing structure can effectively buffer the longitudinal impact of the train and reduce the nodding attitude of the train.The increase of the platform force slope can not only effectively buffer the longitudinal impact and vertical nodding of the train,but also reduce the lateral swing of the train.An increase in the initial peak force to a certain extent may lead to a change in the deformation mode,thereby reducing the energy-absorption fficiency.The correlation model can guide the design of the square-cone energy-absorbing structure and predict the deformation attitude of the leading vehicle.
文摘New industrial applications call for new methods and new ideas in signal analysis. Wavelet packets are new tools in industrial applications and they have just recently appeared in projects and patents. In training neural networks, for the sake of dimensionality and of ratio of time, compact information is needed. This paper deals with simultaneous noise suppression and signal compression of quasi-harmonic signals. A quasi-harmonic signal is a signal with one dominant harmonic and some more sub harmonics in superposition. Such signals often occur in rail vehicle systems, in which noisy signals are present. Typically, they are signals which come from rail overhead power lines and are generated by intermodulation phenomena and radio interferences. An important task is to monitor and recognize them. This paper proposes an algorithm to differentiate discrete signals from their noisy observations using a library of nonorthonormal bases. The algorithm combines the shrinkage technique and techniques in regression analysis using Shannon Entropy function and Cross Entropy function to select the best discernable bases. Cosine and sine wavelet bases in wavelet packets are used. The algorithm is totally general and can be used in many industrial applications. The effectiveness of the proposed method consists of using as few as possible samples of the measured signal and in the meantime highlighting the difference between the noise and the desired signal. The problem is a difficult one, but well posed. In fact, compression reduces the level of the measured noise and undesired signals but introduces the well known compression noise. The goal is to extract a coherent signal from the measured signal which will be "well represented" by suitable waveforms and a noisy signal or incoherent signal which cannot be "compressed well" by the waveforms. Recursive residual iterations with cosine and sine bases allow the extraction of elements of the required signal and the noise. The algorithm that has been developed is utilized as a filter to extract features for training neural networks. It is currently integrated in the inferential modelling platform of the unit for Advanced Control and Simulation Solutions within ABB's industry division. An application using real measured data from an electrical railway line is presented to illustrate and analyze the effectiveness of the proposed method. Another industrial application in fault detection, in which coherent and incoherent signals are univocally visible, is also shown.