期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
铁路智能运输系统——现状、挑战与发展 被引量:13
1
作者 贾利民 聂阿新 王富章 《交通运输系统工程与信息》 EI CSCD 2001年第3期207-211,共5页
在对铁路发展过程进行简要回顾的基础上 ,指出通过在信息化基础上的智能化 ,使铁路运输系统向铁路智能运输系统转化是保持和提高铁路运输业在 2 1世纪竞争力的核心战略 .之后给出了铁路智能运输系统 ( RITS)的定义、特点及一般构成 ,并... 在对铁路发展过程进行简要回顾的基础上 ,指出通过在信息化基础上的智能化 ,使铁路运输系统向铁路智能运输系统转化是保持和提高铁路运输业在 2 1世纪竞争力的核心战略 .之后给出了铁路智能运输系统 ( RITS)的定义、特点及一般构成 ,并在对 RITS相关研究发展简要回顾的基础上 ,提出了中国 RITS的发展框架 ,系统结构体系以及构成我国 RITS的核心技术 ,以及中国 展开更多
关键词 铁路 智能运输系统 交通现状 系统目标 系统功能 系统结构 RITS技术 发展模式
下载PDF
Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information preview and neural networks for plug-in hybrid electric vehicles fuel economy 被引量:2
2
作者 Ahmad MOZAFFARI Mahyar VAJEDI Nasser L. AZAD 《Frontiers of Mechanical Engineering》 SCIE CSCD 2015年第2期154-167,共14页
The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug... The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categoriz- ing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomic software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs. 展开更多
关键词 trip information preview intelligent transpor-tation state-of-charge trajectory builder immune systems artificial neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部