The authors investigate possible changes of monsoon rainfall and associated seasonal (June-JulyAugust) anomaly patterns over eastern China in the late 21st century under the Intergovernmental Panel on Climate Change (...The authors investigate possible changes of monsoon rainfall and associated seasonal (June-JulyAugust) anomaly patterns over eastern China in the late 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 emission scenario as simulated by a high-resolution regional climate model (RegCM3) nested in a general circulation model (FvGCM/CCM3).Two sets of multi-decadal simulations are performed at 20-km grid spacing for present day and future climate conditions.Results show that the RegCM3 reproduces the mean rainfall distribution;however the evolution of the monsoon rain belt from South China to North China is not well simulated.Concerning the rain pattern classifications,RegCM3 overestimates the occurrence of Pattern 1 (excessive rainfall in northern China) and underestimates that of Pattern 2 (increased rainfall over the Huai River basin).Under future climate conditions,RegCM3 projects less occurrence of Pattern 1,more of Pattern 2,and little change of Pattern 3 (rainfall increase along the Yangtze River).These results indicate that there might be increased rainfall over the Huai-Yellow River area and reduced rainfall over North China in the future,while rainfall over the lower reaches of the Yangtze River basin is not modified significantly.Uncertainties exist in the present study are also discussed.展开更多
Seed dispersal is a fundamental process affecting destinies of seeds and seedlings, as well as regeneration dynamics and distribution patterns of communities. Recently however, declining Populus euphratica forests hav...Seed dispersal is a fundamental process affecting destinies of seeds and seedlings, as well as regeneration dynamics and distribution patterns of communities. Recently however, declining Populus euphratica forests have failed to regenerate by seeding, while the spatial pattern and utility of their seed rains are unclear. In this study, we designed a model to simulate seed rains based on field investigations by fitting our observations to a normal distribution and testing the model with data from three years, with ac- ceptable results. We examined the simulated results of dispersed seeds patterns on the classification of three factors, i.e., density of Sophora alopecuroides, surface soil moisture and surface soil salinity. The results of seed rain simulation show that over 70% of seeds were dispersed and confined to each of the three plots where their mother trees located. The proportion of 3:7 seeds dispersed inside and outside each plots remained largely unaltered. The differences in the amounts of dispersed seed among the different levels of each of the factors were not significant, although the distributing pattern of P. euphratica in each plot varied. Therefore, in P. eu- phratica communities, the amount of seed does not become a constraint in subsequent germination, although the surface environment does. We conclude that successful P. euphratica seed regeneration relies on less than 30% of seeds dispersed over longer distance to colonize favorable growth habitats.展开更多
Labov的语篇分析模式为叙事语篇的分析提供了具有指导意义的操作方法。他所提出的分析模式包括点题、指向、进展、评议、结局和回应六个部分。结合这一模式分析Cat in the Rain一文的叙事结构,探讨该语篇的特点,以期进一步了解作者谋篇...Labov的语篇分析模式为叙事语篇的分析提供了具有指导意义的操作方法。他所提出的分析模式包括点题、指向、进展、评议、结局和回应六个部分。结合这一模式分析Cat in the Rain一文的叙事结构,探讨该语篇的特点,以期进一步了解作者谋篇布局的超结构和写作意图。展开更多
Severe disasters caused by extreme precipitation events have attracted more and more attention. The relationship between climate change and extreme precipitation has become the hottest scientific frontier issue. The s...Severe disasters caused by extreme precipitation events have attracted more and more attention. The relationship between climate change and extreme precipitation has become the hottest scientific frontier issue. The study of daily torrential rain observations from 659 meteorological stations in China from 1951 to 2010 shows that rapid urbanization may have triggered a significant increase in heavy rains in China. It reached following conclusions: China’s interdecadal heavy rainfall amount,rainy days and rain intensity increased significantly,with an increase of 68. 71%,60. 15% and 11. 52%,respectively. The increase in the number of stations was 84. 22%,84. 22% and 54. 48%,respectively. It showed time change of " rapid-slow-rapid increase" and spatial change of gradual increase from southeastern coast to central China,southwest,north China,and northeastern regions. Rapid urbanization factors,including secondary industry output( GDP2),urban population ratio( UP),annual average haze days( HD),are likely to be the main causes of the increase in heavy rains in China. Their explanations of the variance of heavy rainfall amount( HRA),rainy day( RD) and rain intensity( RI) in China reached 61. 54%,58. 48% and 65. 54%,respectively,of which only the explanation of variance of heavy rainfall amount,rainy days and rain intensity was as high as 25. 93%,22. 98%and 26. 64%,respectively. However,explanation of variance of climatic factors including WPSH( West Pacific Subtropical High),ENSO( El Ni1 o-Southern Oscillation) AMO( Atlantic Interdecadal Oscillation),and AAO( Antarctic Oscillation) was only 24. 30%,26. 23%,and 21. 92%,respectively. Compared with the rapid urbanization forcing factor,the impact of these climatic factors was only one third of the former. The panel data of China’s county-level total population and annual average of visibility days were significantly correlated with China’s interdecadal heavy rainfall amount,rainy days and rain intensity. Their spatial correlation coefficient increased gradually from 1951-1960 to 2001-2010,that is,the total population of the county level increased from 0. 35,0. 36,and 0. 40 to 0. 54,0. 55,and 0. 58,respectively.The annual average of visibility days increased from 0. 36,0. 38,and 0. 48 to 0. 55. 0. 57,0. 58,further indicating that rapid urbanization triggered a significant increase in interdecadal large-area heavy rains in China.展开更多
基金jointly supported by the National Basic Research Program of China (Grant No.2009CB421407) the R&D Special Fund for Public Welfare Industry (meteorology) (GYHY200806010)
文摘The authors investigate possible changes of monsoon rainfall and associated seasonal (June-JulyAugust) anomaly patterns over eastern China in the late 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 emission scenario as simulated by a high-resolution regional climate model (RegCM3) nested in a general circulation model (FvGCM/CCM3).Two sets of multi-decadal simulations are performed at 20-km grid spacing for present day and future climate conditions.Results show that the RegCM3 reproduces the mean rainfall distribution;however the evolution of the monsoon rain belt from South China to North China is not well simulated.Concerning the rain pattern classifications,RegCM3 overestimates the occurrence of Pattern 1 (excessive rainfall in northern China) and underestimates that of Pattern 2 (increased rainfall over the Huai River basin).Under future climate conditions,RegCM3 projects less occurrence of Pattern 1,more of Pattern 2,and little change of Pattern 3 (rainfall increase along the Yangtze River).These results indicate that there might be increased rainfall over the Huai-Yellow River area and reduced rainfall over North China in the future,while rainfall over the lower reaches of the Yangtze River basin is not modified significantly.Uncertainties exist in the present study are also discussed.
基金supported by the National Natural Science Foundation of China(No.30570332,31070553)the 11th Five-Year Plan of the National Scientific and Technological Support Projects(2008BADB0B05)
文摘Seed dispersal is a fundamental process affecting destinies of seeds and seedlings, as well as regeneration dynamics and distribution patterns of communities. Recently however, declining Populus euphratica forests have failed to regenerate by seeding, while the spatial pattern and utility of their seed rains are unclear. In this study, we designed a model to simulate seed rains based on field investigations by fitting our observations to a normal distribution and testing the model with data from three years, with ac- ceptable results. We examined the simulated results of dispersed seeds patterns on the classification of three factors, i.e., density of Sophora alopecuroides, surface soil moisture and surface soil salinity. The results of seed rain simulation show that over 70% of seeds were dispersed and confined to each of the three plots where their mother trees located. The proportion of 3:7 seeds dispersed inside and outside each plots remained largely unaltered. The differences in the amounts of dispersed seed among the different levels of each of the factors were not significant, although the distributing pattern of P. euphratica in each plot varied. Therefore, in P. eu- phratica communities, the amount of seed does not become a constraint in subsequent germination, although the surface environment does. We conclude that successful P. euphratica seed regeneration relies on less than 30% of seeds dispersed over longer distance to colonize favorable growth habitats.
基金Supported by Project of National Natural Science Foundation of China(41801064)China Postdoctoral Science Foundation(2019T120114+1 种基金2019M650756)Central Asian Atmospheric Science Research Fund(CAAS201804)
文摘Severe disasters caused by extreme precipitation events have attracted more and more attention. The relationship between climate change and extreme precipitation has become the hottest scientific frontier issue. The study of daily torrential rain observations from 659 meteorological stations in China from 1951 to 2010 shows that rapid urbanization may have triggered a significant increase in heavy rains in China. It reached following conclusions: China’s interdecadal heavy rainfall amount,rainy days and rain intensity increased significantly,with an increase of 68. 71%,60. 15% and 11. 52%,respectively. The increase in the number of stations was 84. 22%,84. 22% and 54. 48%,respectively. It showed time change of " rapid-slow-rapid increase" and spatial change of gradual increase from southeastern coast to central China,southwest,north China,and northeastern regions. Rapid urbanization factors,including secondary industry output( GDP2),urban population ratio( UP),annual average haze days( HD),are likely to be the main causes of the increase in heavy rains in China. Their explanations of the variance of heavy rainfall amount( HRA),rainy day( RD) and rain intensity( RI) in China reached 61. 54%,58. 48% and 65. 54%,respectively,of which only the explanation of variance of heavy rainfall amount,rainy days and rain intensity was as high as 25. 93%,22. 98%and 26. 64%,respectively. However,explanation of variance of climatic factors including WPSH( West Pacific Subtropical High),ENSO( El Ni1 o-Southern Oscillation) AMO( Atlantic Interdecadal Oscillation),and AAO( Antarctic Oscillation) was only 24. 30%,26. 23%,and 21. 92%,respectively. Compared with the rapid urbanization forcing factor,the impact of these climatic factors was only one third of the former. The panel data of China’s county-level total population and annual average of visibility days were significantly correlated with China’s interdecadal heavy rainfall amount,rainy days and rain intensity. Their spatial correlation coefficient increased gradually from 1951-1960 to 2001-2010,that is,the total population of the county level increased from 0. 35,0. 36,and 0. 40 to 0. 54,0. 55,and 0. 58,respectively.The annual average of visibility days increased from 0. 36,0. 38,and 0. 48 to 0. 55. 0. 57,0. 58,further indicating that rapid urbanization triggered a significant increase in interdecadal large-area heavy rains in China.