期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Projecting Spring Consecutive Rainfall Events in the Three Gorges Reservoir Based on Triple-Nested Dynamical Downscaling 被引量:2
1
作者 Yanxin ZHENG Shuanglin LI +2 位作者 Noel KEENLYSIDE Shengping HE Lingling SUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1539-1558,共20页
Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate model... Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6. 展开更多
关键词 triple-nested downscaling Three Gorges Reservoir area consecutive rainfall events geological hazards PROJECTION
下载PDF
Characteristics and Preliminary Causes of Tropical Cyclone Extreme Rainfall Events over Hainan Island 被引量:8
2
作者 Xianling JIANG Fumin REN +3 位作者 Yunjie LI Wenyu QIU Zhuguo MA Qinbo CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第5期580-591,共12页
The characteristics of tropical cyclone(TC) extreme rainfall events over Hainan Island from 1969 to 2014 are analyzed from the viewpoint of the TC maximum daily rainfall(TMDR) using daily station precipitation dat... The characteristics of tropical cyclone(TC) extreme rainfall events over Hainan Island from 1969 to 2014 are analyzed from the viewpoint of the TC maximum daily rainfall(TMDR) using daily station precipitation data from the Meteorological Information Center of the China Meteorological Administration, TC best-track data from the Shanghai Typhoon Institute,and NCEP/NCAR reanalysis data. The frequencies of the TMDR reaching 50, 100 and 250 mm show a decreasing trend[-0.7(10 yr)^(-1)], a weak decreasing trend [-0.2(10 yr)^(-1)] and a weak increasing trend [0.1(10 yr)^(-1)], respectively. For seasonal variations, the TMDR of all intensity grades mainly occurs from July to October, with the frequencies of TMDR 50 mm and 100 mm peaking in September and the frequency of TMDR 250 mm [TC extreme rainstorm(TCER) events]peaking in August and September. The western region(Changjiang) of the Island is always the rainfall center, independent of the intensity or frequencies of different intensity grades. The causes of TCERs are also explored and the results show that topography plays a key role in the characteristics of the rainfall events. TCERs are easily induced on the windward slopes of Wuzhi Mountain, with the coordination of TC tracks and TC wind structure. A slower speed of movement, a stronger TC intensity and a farther westward track are all conducive to extreme rainfall events. A weaker northwestern Pacific subtropical high is likely to make the 500-h Pa steering flow weaker and results in slower TC movement, whereas a stronger South China Sea summer monsoon can carry a higher moisture flux. These two environmental factors are both favorable for TCERs. 展开更多
关键词 Hainan Island tropical cyclones extreme rainfall events CHARACTERISTICS CAUSES
下载PDF
Changes in Regional Heavy Rainfall Events in China during 1961–2012 被引量:16
3
作者 ZOU Xukai REN Fumin 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第5期704-714,共11页
A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events i... A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events in China during the period1961–2012. In total, 373 regional heavy rainfall events(RHREs) were identified during the past 52 years. The East Asian summer monsoon(EASM) had an important influence on the annual variations of China's RHRE activities, with a significant relationship between the intensity of the RHREs and the intensity of the Mei-yu. Although the increase in the frequency of those RHREs was not significant, China experienced more severe and extreme regional rainfall events in the 1990 s. The middle and lower reaches of the Yangtze River and the northern part of South China were the regions in the country most susceptible to extreme precipitation events. Some stations showed significant increasing trends in the southern part of the middle and lower reaches of the Yangtze River and the northern part of South China, while parts of North China, regions between Guangxi and Guangdong, and northern Sichuan showed decreasing trends in the accumulated intensity of RHREs.The spatial distribution of the linear trends of events' accumulated intensity displayed a similar so-called "southern flooding and northern drought" pattern over eastern China in recent decades. 展开更多
关键词 China regional heavy rainfall events
下载PDF
Typical Circulation Patterns and Associated Mechanisms for Persistent Heavy Rainfall Events over Yangtze–Huaihe River Valley during 1981–2020 被引量:6
4
作者 Huijie WANG Jianhua SUN +1 位作者 Shenming FU Yuanchun ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第12期2167-2182,共16页
Persistent heavy rainfall events(PHREs)over the Yangtze–Huaihe River Valley(YHRV)during 1981–2020 are classified into three types(type-A,type-B and type-C)according to pattern correlation.The characteristics of the ... Persistent heavy rainfall events(PHREs)over the Yangtze–Huaihe River Valley(YHRV)during 1981–2020 are classified into three types(type-A,type-B and type-C)according to pattern correlation.The characteristics of the synoptic systems for the PHREs and their possible development mechanisms are investigated.The anomalous cyclonic disturbance over the southern part of the YHRV during type-A events is primarily maintained and intensified by the propagation of Rossby wave energy originating from the northeast Atlantic in the mid–upper troposphere and the northward propagation of Rossby wave packets from the western Pacific in the mid–lower troposphere.The zonal propagation of Rossby wave packets and the northward propagation of Rossby wave packets during type-B events are more coherent than those for type-A events,which induces eastward propagation of stronger anomaly centers of geopotential height from the northeast Atlantic Ocean to the YHRV and a meridional anomaly in geopotential height over the Asian continent.Type-C events have“two ridges and one trough”in the high latitudes of the Eurasian continent,but the anomalous intensity of the western Pacific subtropical high(WPSH)and the trough of the YHRV region are weaker than those for type-A and type-B events.The composite synoptic circulation of four PHREs in 2020 is basically consistent with that of the corresponding PHRE type.The location of the South Asian high(SAH)in three of the PHREs in 2020 moves eastward as in the composite of the three types,but the position of the WPSH of the four PHREs is clearly westward and northward.Two water vapor conveyor belts and two cold air conveyor belts are tracked during the four PHREs in 2020,but the water vapor path from the western Pacific is not seen,which may be caused by the westward extension of the WPSH. 展开更多
关键词 persistent heavy rainfall events Yangtze-Huaihe River Valley Rossby wave energy dispersion water vapor paths cold air paths
下载PDF
Impacts of the Thermal Effects of Sub-grid Orography on the Heavy Rainfall Events Along the Yangtze River Valley in 1991 被引量:7
5
作者 冯蕾 张耀存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期881-892,共12页
A P - σ regional climate model using a parameterization scheme to account for the thermal effects of the sub-grid scale orography was used to simulate the three heavy rainfall events that occurred within the Yangtze ... A P - σ regional climate model using a parameterization scheme to account for the thermal effects of the sub-grid scale orography was used to simulate the three heavy rainfall events that occurred within the Yangtze River Valley during the mei-yu period of 1991. The simulation results showed that by considering the sub-grid scale topography scheme, one can significantly improve the performance of the model for simulating the rainfall distribution and intensity during these three heavy rainfall events, most especially the second and third. It was also discovered that the rainfall was mainly due to convective precipitation. The comparison between experiments, either with and without the sub-grid scale topography scheme, showed that the model using the scheme reproduced the convergence intensity and distribution at the 850 hPa level and the ascending motion and moisture convergence center located at 500 hPa over the Yangtze River valley. However, some deviations still exist in the simulation of the atmospheric moisture content, the convergence distribution and the moisture transportation route, which mainly result in lower simulated precipitation levels. Further analysis of the simulation results demonstrated that the sub-grid topography scheme modified the distribution of the surface energy budget components, especially at the south and southwest edges of the Tibetan Plateau, leading to the development and eastward propagation of the negative geopotential height difference and positive temperature-lapse rate difference at 700 hPa, which possibly led to an improved precipitation simulation over eastern China. 展开更多
关键词 sub-grid scale orographic parameterization heavy rainfall events numerical simulation
下载PDF
Correlation Analysis of Persistent Heavy Rainfall Events in the Vicinity of the Yangtze River Valley and Global Outgoing Longwave Radiation in the Preceding Month 被引量:6
6
作者 汤燕冰 赵璐 高坤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第6期1169-1180,共12页
Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the ... Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the linkage between persistent heavy rainfall (PHR) events in the vicinity of the Yangtze River valley and global OLR leading up to those events (with 1- to 3O-day lag) was investigated. The results reveal that there is a significant connection between the initiation of PHR events over the study area and anomalous convective activity over the tropical Indian Ocean, maritime continent, and tropical western Pacific Ocean. During the 30-day period prior to the onset of PHR events, the major significantly anomalous convective centers have an apparent dipole structure, always with enhanced convection in the west and suppressed convection in the east. This dipole structure continuously shifts eastward with time during the 30-day lead period. The influence of the anomalous convective activity over the tropical oceans on the initiation of PHR events over the study area is achieved via an interaction between tropical and extratropical latitudes. More specifically, anomalous convective activity weakens the Walker circulation cell over the tropical Indian Ocean first. This is followed by a weakening of the Indian summer monsoon background state and the excitation and dispersion of Rossby wave activity over Eurasia. Finally, a major modulation of the large scale background circulation occurs. As a result, the condition of a phase-lock among major large scale circulation features favoring PHR events is established over the study area. 展开更多
关键词 persistent heavy rainfall events global outgoing longwave radiation the Yangtze River valley
下载PDF
The effects of extreme rainfall events on carbon release from biological soil crusts covered soil in fixed sand dunes in the Tengger Desert, northern China 被引量:4
7
作者 Yang Zhao XinRong Li +3 位作者 ZhiShan Zhang RongLiang Jia YiGang Hu Peng Zhang 《Research in Cold and Arid Regions》 CSCD 2013年第2期191-196,共6页
In May to August of 2011, we assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dune... In May to August of 2011, we assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, northern China. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2.s), 0.10 and 0.45 gmolCO2/(m2·s), 0.83 and 1.69 gmolCO2/(m2.s). Our study indicated that moss crust in the advanced succession stage can well adaot to extreme rainfall events in the short term. 展开更多
关键词 carbon release extreme rainfall events biological soil crust
下载PDF
Understanding the Evolution and Socio-Economic Impacts of the Extreme Rainfall Events in March-May 2017 to 2020 in East Africa 被引量:1
8
作者 Ladislaus Benedict Chang’a Agnes Lawrence Kijazi +10 位作者 Kantamla Biseke Mafuru Patricia Achieng Nying’uro Musa Ssemujju Bamanya Deus Alfred Lawrence Kondowe Isack Baliyendeza Yonah Mohamed Ngwali Sudi Yasini Kisama Gahigi Aimable Joseph Ndakize Sebaziga Blandine Mukamana 《Atmospheric and Climate Sciences》 2020年第4期553-572,共20页
This study aimed at assessing the evolution, distribution and the socio-economic impacts of extreme rainfall over East Africa during the March, April and May (MAM) rainfall season focusing on assessing the trends and ... This study aimed at assessing the evolution, distribution and the socio-economic impacts of extreme rainfall over East Africa during the March, April and May (MAM) rainfall season focusing on assessing the trends and contribution of MAM rainfall in mean annual rainfall across the region. It employed Principal Component Analysis (PCA) methods to capture the patterns and variability of MAM rainfall. The PCA results indicated that the first Principal Component (PC) describe 17% of the total variance, while the first six PCs account only 53.5% of the total variance in MAM rainfall, underscoring the complexity of rainfall forcing factors in the region. It has been observed that MAM rainfall accounts about 30% - 60% of the mean annual rainfall in most parts of the region, signifying its importance in agriculture, water, energy and other socio-economic sectors. MAM has been characterized by increasing variability with varying trend patterns across the region. The MAM rainfall trend is not homogeneous across the region;some areas are experiencing a slight decreasing rainfall trend, while other areas are experiencing a slight increasing rainfall trend. The observed trend dynamics is consistent with the global trend patterns in precipitation as depicted in recent Intergovernmental Panel on Climate Change (IPCC) reports. Over the last five years MAM rainfall season have been characterized by record-breaking extremes. On 8th May 2017, Tanga and Mombasa meteorological stations recorded 316 mm and 235.1 mm of rainfall in 24 hours respectively, which are the highest amounts for these respective stations, since their establishment. Record highest 24 hours rainfall amounting to 134.9 mm and 119.4 mm were also observed at Buginyanya and Kawanda meteorological stations in Uganda on 18th March 2018 and 7<sup>th</sup> May 2020. On 6<sup>th</sup> May 2020, Byimana meteorological station in Rwanda, also observed 140.6 mm of rainfall in 24 hours, the highest since its establishment. These extremes have caused multiple losses of life and property, and severe damages to infrastructure. Unfortunately, the frequency and intensity of these extremes are projected to increase under a changing regional climate patterns. It is therefore important that more studies are carried out to enhance understanding about the evolution, dynamics and predictability of these extremes in East Africa region. 展开更多
关键词 Extreme rainfall events Principal Components MAM ENSO IOD
下载PDF
Moist Potential Vorticity Vector for Diagnosis of Heavy Rainfall Events in Tanzania 被引量:1
9
作者 Philbert Modest Luhunga George Djolov Edmund Mutayoba 《Journal of Geoscience and Environment Protection》 2016年第9期128-145,共18页
In this paper, we modify the convective vorticity vector (CVV) defined as a cross product of absolute vorticity and gradient of equivalent potential temperature to moist potential vorticity vector (MPVV) defined as a ... In this paper, we modify the convective vorticity vector (CVV) defined as a cross product of absolute vorticity and gradient of equivalent potential temperature to moist potential vorticity vector (MPVV) defined as a cross product of absolute vorticity () and the gradient of the moist-air entropy potential temperature ().  The patterns of (MPVV) are compared with the patterns of heavy rainfall events that occurred over different regions in Tanzania on 20<sup>th</sup> to 22<sup>nd</sup> December, 2011 and on 5<sup>th</sup> to 8<sup>th</sup> May, 2015. Moreover, the article aimed at assessing the relative contributions of the magnitude, horizontal and vertical components of (MPVV) detecting on the observed patterns of rainfall events. Dynamic and thermodynamic variables: wind speed, temperature, atmospheric pressure and relative humidity from numerical output generated by the Weather Research and Forecasting (WRF) model running at Tanzania Meteorological Agency (TMA) were used to compute MPVV. It is found that MPVV provide accurate tracking of locations received heavy rainfall, suggesting its potential use as a dynamic tracer for heavy rainfall events in Tanzania.  Finally it is found that the first and second components of MPVV contribute almost equally in tracing locations received heavy rainfall events. The magnitude of MPVV described the locations received heavy rainfall events better than the components. 展开更多
关键词 Moist Potential Vorticity Vector Moist-Air Entropic Potential Temperature Heavy rainfall events
下载PDF
Extreme Rainfall Events over the Amazon Basin Produce Significant Quantities of Rain Relative to the Rainfall Climatology
10
作者 Adriane Lima Brito Jose Augusto Paixao Veiga Marcos Cezar Yoshida 《Atmospheric and Climate Sciences》 2014年第2期179-191,共13页
Although much effort has been made to characterize and understand extreme rainfall’s causes and effects, little is known about their frequency and intensity. Moreover, knowledge about their contribution to the total ... Although much effort has been made to characterize and understand extreme rainfall’s causes and effects, little is known about their frequency and intensity. Moreover, knowledge about their contribution to the total rainfall climatology is still minimal, especially over the Amazon where rainfall data are very scarce. In this paper we propose to classify extreme rainfall events by type and analyze their frequency and intensity over South America with a focus on the Amazon basin. Gridded daily data from the MERGE/CPTEC product over a period of 15 years (1998–2013) was used. An adaptation of Rx5d climate index was applied to select different kinds of extreme rainfall for the purpose of quantifying their frequency and intensity as well as their contribution to the accumulated rainfall climatology. According to the results, all kinds of extreme rainfall events can be observed over the studied area. However, the quantity of rainfall produced by each type is different, and consequently their percent contributions to the total accumulated rainfall climatology also differ. For example: in the Amazon region EET-I is responsible for 15% - 40% of the total accumulated rainfall. Moreover, in the Brazilian northeast there are regions where EET-I exceeds 40% of the total rainfall. In northeast Brazil EET-II is responsible up to 30% of the total accumulated rainfall. EET-III is responsible for 5% - 15% in the Amazon basin, 25% - 45% in northeast Brazil and 10% - 45% over Roraima State. Area-mean time variation shows that the quantity of rainfall extremes over the Amazon basin was reduced during the El Nino years of 2002, 2005, 2007 and 2010, while during the La Ni?a episodes of 1999, 2008 and 2011 the quantity of rainfall related to the extremes increased. 展开更多
关键词 Extreme rainfall events CLIMATOLOGY AMAZON
下载PDF
Diagnosis of a Moist Thermodynamic Advection Parameter in Heavy-Rainfall Events 被引量:11
11
作者 吴贤笃 冉令坤 楚艳丽 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期957-972,共16页
A moist thermodynamic advection parameter, defined as an absolute value of the dot product of hori- zontal gradients of three-dimensional potential temperature advection and general potential temperature, is introduce... A moist thermodynamic advection parameter, defined as an absolute value of the dot product of hori- zontal gradients of three-dimensional potential temperature advection and general potential temperature, is introduced to diagnose frontal heavy rainfall events in the north of China. It is shown that the parameter is closely related to observed 6-h accumulative surface rainfall and simulated cloud hydrometeors. Since the parameter is capable of describing the typical vertical structural characteristics of dynamic, thermodynamic and water vapor fields above a strong precipitation region near the front surface, it may serve as a physical tracker to detect precipitable weather systems near to a front. A tendency equation of the parameter was derived in Cartesian coordinates and calculated with the simulation output data of a heavy rainfall event. Results revealed that the advection of the parameter by the three-dimensional velocity vector, the covariance of potential temperature advection by local change of the velocity vector and general potential temperature, and the interaction between potential temperature advection and the source or sink of general potential temperature, accounted for local change in the parameter. This indicated that the parameter was determined by a combination of dynamic processes and cloud microphysical processes. 展开更多
关键词 moist thermodynamic advection parameter potential temperature advection general potential temperature heavy rainfall event
下载PDF
Main Energy Paths and Energy Cascade Processes of the Two Types of Persistent Heavy Rainfall Events over the Yangtze River–Huaihe River Basin 被引量:6
12
作者 Yuanchun ZHANG Jianhua SUN Shenming FU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期129-143,共15页
Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangt... Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangtze River; and type B, whose precipitation is mainly located to the north of the river. The present study investigated these two PHRE types using a newly derived set of energy equations to show the scale interaction and main energy paths contributing to the persistence of the precipitation. The main results were as follows. The available potential energy (APE) and kinetic energy (KE) associated with both PHRE types generally increased upward in the troposphere, with the energy of the type-A PHREs stronger than that of the type-B PHREs (except for in the middle troposphere). There were two main common and universal energy paths of the two PHRE types: (1) the baroclinic energy conversion from APE to KE was the dominant energy source for the evolution of large-scale background circulations; and (2) the downscaled energy cascade processes of KE and APE were vital for sustaining the eddy flow, which directly caused the PHREs. The significant differences between the two PHRE types mainly appeared in the lower troposphere, where the baroclinic energy conversion associated with the eddy flow in type-A PHREs was from KE to APE, which reduced the intensity of the precipitation-related eddy flow; whereas, the conversion in type-B PHREs was from APE to KE, which enhanced the eddy flow. 展开更多
关键词 persistent heavy rainfall event energy cascade process large-scale background circulation precipitation-related eddy flow
下载PDF
Comparison of two types of persistent heavy rainfall events during sixteen warm seasons in the Sichuan Basin 被引量:3
13
作者 Yuanchun Zhang Jianhua Sun +3 位作者 Luqi Zhu Huan Tang Shuanglong Jin Xiaolin Liu 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第6期48-53,共6页
Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic... Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic circulations and maintenance mechanisms between different PHRE types.There are two main types of PHREs:one is characterized by a rain belt west of 106°E over the SCB(WSB-PHREs),and the other features a rain belt east of 106°E over the SCB(ESB-PHREs).In total,there are 18 ESB-PHREs and 10 WSB-PHREs during the study period.Overall,the rain belts of WSB-PHREs are along the terrain distribution east of the Tibetan Plateau,while the precipitation intensity of ESB-PHREs is stronger.For the two types of PHREs,the shortwave trough over the SCB and the western Pacific subtropical high act as their favorable background environments,particularly for ESB-PHREs.The water vapor of WSB-PHREs is mainly transported from the South China Sea,whereas for ESB-PHREs the South China Sea and Bay of Bengal are their main moisture sources.The composite vorticity budgets of southwest vortices during their mature stage indicate that the convergence effect is a dominant factor for maintaining the two types of PHREs,and the strong vertical vorticity advection is also favorable,but the relative contribution of vertical advection is larger for WSB-PHREs. 展开更多
关键词 Southwest vortex Persistent heavy rainfall event Large-scale circulation Vorticity budget
下载PDF
Real Time Monitoring of Extreme Rainfall Events with Simple X-Band Mini Weather Radar
14
作者 Silvano Bertoldo Claudio Lucianaz +1 位作者 Marco Allegretti Giovanni Perona 《Atmospheric and Climate Sciences》 2016年第2期285-299,共15页
Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficien... Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficient monitoring operations need continuous, high-resolution and large-coverage data. To monitor and observe extreme rainfall events, often much localized over small basins of interest, and that could frequently causing flash floods, an unrealistic extremely dense rain gauge network should be needed. On the other hand, common large C-band or S-band long range radars do not provide the necessary spatial and temporal resolution. Simple short-range X-band mini weather radar can be a valid compromise solution. The present work shows how a single polarization, non-Doppler and non-coherent, simple and low cost X-band radar allowed monitoring three very intense rainfall events occurred near Turin during July 2014. The events, which caused damages and floods, are detected and monitored in real time with a sample rate of 1 minute and a radial spatial resolution of 60 m, thus allowing to describe the intensity of the precipitation on each small portion of territory. This information could be very useful if used by authorities in charge of Civil Protection in order to avoid inconvenience to people and to monitor dangerous situations. 展开更多
关键词 X-Band Radar Extreme rainfall Event Precipitation Monitoring High Temporal Resolution High Spatial Resolution Real Time Monitoring Single Polarization
下载PDF
Disastrous Persistent Extreme Rainfall Events of the 2022 Pre-Flood Season in South China:Causes and Subseasonal Predictions 被引量:1
15
作者 Jiehong XIE Pang-Chi HSU +2 位作者 Yamin HU Qiaomei LIN Mengxi YE 《Journal of Meteorological Research》 SCIE CSCD 2023年第4期469-485,共17页
Two persistent extreme rainfall events(PEREs) with record-breaking amounts of rainfall and long duration caused disastrous impact during the 2022 pre-flood season in South China. Atmospheric intraseasonal variability ... Two persistent extreme rainfall events(PEREs) with record-breaking amounts of rainfall and long duration caused disastrous impact during the 2022 pre-flood season in South China. Atmospheric intraseasonal variability played a key role in triggering and maintaining both PEREs, but its major impact on each event was associated with different modes. For the first PERE(10-15 May;PERE1), the tropical and extratropical quasi-biweekly oscillations jointly contributed to the extreme rainfall intensity. In contrast, the long duration(6-21 June) of the heavy rainfall during the second PERE(PERE2) was closely related to prolonged convection and moisture transport anomalies induced mainly by the tropical 30-90-day variability. Subseasonal-to-seasonal predictions by the model of the ECMWF showed limited skill in relation to the rainfall intensity of PERE1 and PERE2 beyond 1–2 weeks. Further assessment suggested that the fidelity of the PERE predictions was linked to model skill in predicting the phase evolution and intensity of tropical and extratropical intraseasonal variabilities. Thus, efficient monitoring and accurate prediction of the various modes of atmospheric intraseasonal variability are fundamental to reducing the hazard associated with PEREs in South China. 展开更多
关键词 persistent extreme rainfall event intraseasonal oscillation South China subseasonal-to-seasonal prediction
原文传递
Decadal Features of Heavy Rainfall Events in Eastern China 被引量:12
16
作者 陈活泼 孙建奇 范可 《Acta meteorologica Sinica》 SCIE 2012年第3期289-303,共15页
Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the pa... Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1999s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s 1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution. 展开更多
关键词 heavy rainfall events decadal variability eastern China atmosphere water content stratifica-tion stability
原文传递
Classification of Persistent Heavy Rainfall Events over South China and Associated Moisture Source Analysis 被引量:6
17
作者 LIU Ruixin SUN Jianhua +1 位作者 WEI Jie FU Shenming 《Journal of Meteorological Research》 SCIE CSCD 2016年第5期678-693,共16页
Persistent heavy rainfall events (PHREs) over South China during 1981 2014 were selected and classified by an objective method, based on the daily precipitation data at 752 stations in China. The circulation charact... Persistent heavy rainfall events (PHREs) over South China during 1981 2014 were selected and classified by an objective method, based on the daily precipitation data at 752 stations in China. The circulation characteristics, as well as the dry-cold air and moisture sources of each type of PHREs were examined. The main results are as follows. A total of 32 non-typhoon influenced PHREs in South China were identified over the study period. By correlation analysis, the PHREs are divided into three types: SC-A type, with its main rainbelt located in the coastal areas and the northeast of Guangdong Province; SC-B type, with its main rainbelt between Guangdong Province and Guangxi Region; and SC-C type, with its main rainbelt located in the north of Guangxi Region. For the SC-A events, dry-cold air flew to South China under the steering effect of troughs in the middle troposphere which originated from the Ural Mountains and West Siberia Plain; whereas, the SC-C events were not influenced by the cold air from high latitudes. There were three water vapor pathways from low-latitude areas for both the SC-A and SC-C PHREs. The tropical Indian Ocean was the main water vapor source for these two PHRE types, while the South China Sea also contributed to the SC-C PHREs. In addition, the SC-A events were also influenced by moist and cold air originating from the Yellow Sea. Generally, the SC-C PHREs belonged to a warm-sector rainfall type, whose precipitation areas were dominated by southwesterly wind, and the convergence in wind speed was the main reason for precipitation. 展开更多
关键词 persistent heavy rainfall events South China warm-sector rainfall dry-cold air moisture so- urce water vapor transport
原文传递
Anomalous Midsummer Rainfall in Yangtze River-Huaihe River Valleys and Its Association with the East Asia Westerly Jet 被引量:22
18
作者 宣守丽 张庆云 孙淑清 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第2期387-397,共11页
In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsumm... In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsummer YHRV rainfall was found to significantly increase after the 1980s. Moreover, the location of the EAWJ was found abnormally south of the climatic mean during 1980–2008 (ID2) compared to 1951–1979 (ID1). During ID2, associated with the southward movement of the EAWJ, an anomalous upper-level conver-gence occurred over middle-high latitudes (35° –55° N) and divergence occurred over lower latitudes (~30°N) of East Asia. Correspondingly, anomalous descending and ascending motion was observed in middle-high and lower latitudes along 90°–130° E, respectively, favoring more precipitation over YHRV. On an interan-nual time scale, the EAWJ and YHRV rainfall exhibited similar relationships during the two periods. When the EAWJ was centered abnormally southward, rainfall over YHRV tended to increase. However, EAWJ-related circulations were significantly different during the two periods. During ID1, the circulation of the southward-moving EAWJ exhibited alternating positive–negative–positive distributions from low to middle– high latitudes along the East Asian coast; the most significant anomaly appeared west of the Okhotsk Sea. However, during ID2 the EAWJ was more closely correlated with the tropical and subtropical circulations. Significant differences between ID1 and ID2 were also recorded sea surface temperatures (SSTs). During ID1, the EAWJ was influenced by the extratropical SST over the northern Pacific; however, the EAWJ was more significantly affected by the SST of the tropical western Pacific during ID2. 展开更多
关键词 anomalous rainfall events Yangtze River-Huaihe River valleys East Asian westerly jet wave activity
下载PDF
Assessing the Variability of Heavy Rainfall during October to December Rainfall Season in Tanzania 被引量:1
19
作者 Lovina Peter Japheth Guirong Tan +3 位作者 Ladislaus Benedict Chang’a Agnes Lawrence Kijazi Kantamla Biseke Mafuru Isack Yonah 《Atmospheric and Climate Sciences》 2021年第2期267-283,共17页
Heavy rainfall is one of the primary causes of flood during rainy season in Tanzania leading to severe socio-economic impacts. The study aimed at assessing and characterizing the variability of Heavy Rainfall Events (... Heavy rainfall is one of the primary causes of flood during rainy season in Tanzania leading to severe socio-economic impacts. The study aimed at assessing and characterizing the variability of Heavy Rainfall Events (HREs) using Empirical Orthogonal Function (EOF), Mann-Kendal (MK) trend test, Correlation and Composite analysis methods. Based on the daily-observed precipitation and reanalysis data sets for the October to December (OND) rainfall season of 35 years (1981-2015), the spatial and temporal characteristics of HREs in Tanzania are studied. The relationship between heavy rainfall (HR) and large-scale circulation anomalies including the Indian Ocean dipole (IOD) and El Ni<span style="white-space:nowrap;">?</span>o southern oscillation (ENSO) indices was assessed. The study found that, approximately 590 HREs were concentrated over northern sector and coastal belt of Tanzania. The monthly variability indicates that HREs are more pronounced in December followed by November while October being the least affected. The occurrence of HREs over the Lake Victoria, Kigoma and Tabora is largely attributed to low-level convergence of westerlies and enhanced moisture from Congo basin accompanied by a pronounced rising limb of Indian Walker circulation cell. A time-series analysis of HRE exhibits an inter-annual variation characterized by a slightly increasing trend, though the computed trends were not statistically significant at 95% confidence level. In most part of Tanzania HREs were positively correlated with both ENSO and IOD indices, underscoring the critical role of ENSO and Indian Ocean dynamic in modulating rainfall variability over the region. In general, it has been found that most of the HREs are generally triggered or amplified by large-scale circulation patterns such as ENSO and IOD. 展开更多
关键词 rainfall Variability Heavy rainfall events OND Tanzania
下载PDF
Response of Soil Moisture to Rainfall Event in Black Locust Plantations at Different Stages of Restoration in Hilly-gully Area of the Loess Plateau, China 被引量:6
20
作者 CHEN Weiliang LI Zongshan +3 位作者 JIAO Lei WANG Cong GAO Guangyao FU Bojie 《Chinese Geographical Science》 SCIE CSCD 2020年第3期427-445,共19页
Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust(Robinia pseudoacac... Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust(Robinia pseudoacacia) plantations(RP plantations), which are widely planted due to R. pseudoacacia being an excellent pioneer species. Characterizing the response of soil moisture to rainfall events at different stages of restoration is important for assessing the sustainability of restoration in RP plantations. In this study, we quantified the response of soil moisture to rainfall events at different years of restoration(15, 20 and 30 yr) representing different restoration stages in RP plantations in a typical hilly-gully area, i.e., the Yangjuangou Catchment, of the Loess Plateau, China. Over the growing season(June to September) of 2017, smart probes were placed at nine depths(10, 20, 40, 60, 80, 100, 120, 150, and 180 cm below the soil surface) to obtain volumetric soil water information at 30-min intervals in the three RP plantations. The advance of the wetting front was depicted, and the total cumulative water infiltration was measured. Soil moisture was mainly replenished by eight heavy rainfall events(mean rainfall amount = 46.3 mm), accounting for 88.7% of the rainfall during the growing season. The mean soil moisture content profiles of RP plantations at the three restoration stages were ordered as 30-yr(14.07%) > 20-yr(10.12%) > 15-yr(8.03%), and this relationship displayed temporal stability. Soil moisture was primarily replenished by rainfall at the 0-60 cm soil depth, and soil moisture remained stable below the 100-cm soil depth. The rainfall regime influenced the advancement of the wetting front. Here, a single rainfall event of 30 mm was the rainfall threshold for infiltration into the 60-cm soil layer. The total infiltration time ranged from 310.5-322.0 h, but no significant differences were found among RP plantations at different restoration stages. Young and old RP plantations had more total infiltration(more than 228.2 mm) and deeper infiltration depths(80-100 cm) than middle-aged plantations. The RP plantation at the intermediate restoration stage exhibited minimal total infiltration(174.2 mm) and a shallow infiltration depth(60 cm) due to the soil physical structure of the plot, which may have limited rain infiltration. More stand conditions that may affect infiltration should be considered for priority afforestation areas. 展开更多
关键词 artificial-forest ecosystem hilly-gully area restoration stages soil water replenishment rainfall regimes rainfall event
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部