Using a 40-yr dally precipitation dataset including 134 stations from 1962 to 2001, the large-scale distribution patterns of precipitation anomalies over East China are investigated in the present paper. In the phase ...Using a 40-yr dally precipitation dataset including 134 stations from 1962 to 2001, the large-scale distribution patterns of precipitation anomalies over East China are investigated in the present paper. In the phase space spanned by the first 8 EOFs generated from the 20-day low-pass filtered data, the six rainfall regimes (RRs) are identified by applying a cluster analysis method, namely, the northeastern China regime, Yellow River regime, Qinling Mountain-Hualhe River regime, Yangtze River with its south regime, South China regime, and rainless regime. Analyses show that the new RRs exhibit good persistence and evident physical sense, and excellently represent both of countrywide and regional features, which also demonstrate the inhomogeneity of multi-dimensional phase space. ~rthermore, it is more important that the new RRs can describe intraseasonal dynamic characteristics of large-scale rainfall anomalies, which is the most significant difference between the new RRs and the conventional seasonal mean rainfall patterns. On the other hand, the climatic characteristics of dally distributions of the RRs events, as well as the 40-year panorama of the RRs occurring are also investigated, which further document rationality and objectivity of the RRs with intraseasonal variability, and are likely to present more helpful information for short-term climate prediction, compared with other previous classical rainfall patterns.展开更多
Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust(Robinia pseudoacac...Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust(Robinia pseudoacacia) plantations(RP plantations), which are widely planted due to R. pseudoacacia being an excellent pioneer species. Characterizing the response of soil moisture to rainfall events at different stages of restoration is important for assessing the sustainability of restoration in RP plantations. In this study, we quantified the response of soil moisture to rainfall events at different years of restoration(15, 20 and 30 yr) representing different restoration stages in RP plantations in a typical hilly-gully area, i.e., the Yangjuangou Catchment, of the Loess Plateau, China. Over the growing season(June to September) of 2017, smart probes were placed at nine depths(10, 20, 40, 60, 80, 100, 120, 150, and 180 cm below the soil surface) to obtain volumetric soil water information at 30-min intervals in the three RP plantations. The advance of the wetting front was depicted, and the total cumulative water infiltration was measured. Soil moisture was mainly replenished by eight heavy rainfall events(mean rainfall amount = 46.3 mm), accounting for 88.7% of the rainfall during the growing season. The mean soil moisture content profiles of RP plantations at the three restoration stages were ordered as 30-yr(14.07%) > 20-yr(10.12%) > 15-yr(8.03%), and this relationship displayed temporal stability. Soil moisture was primarily replenished by rainfall at the 0-60 cm soil depth, and soil moisture remained stable below the 100-cm soil depth. The rainfall regime influenced the advancement of the wetting front. Here, a single rainfall event of 30 mm was the rainfall threshold for infiltration into the 60-cm soil layer. The total infiltration time ranged from 310.5-322.0 h, but no significant differences were found among RP plantations at different restoration stages. Young and old RP plantations had more total infiltration(more than 228.2 mm) and deeper infiltration depths(80-100 cm) than middle-aged plantations. The RP plantation at the intermediate restoration stage exhibited minimal total infiltration(174.2 mm) and a shallow infiltration depth(60 cm) due to the soil physical structure of the plot, which may have limited rain infiltration. More stand conditions that may affect infiltration should be considered for priority afforestation areas.展开更多
Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quanti...Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and Iso values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI30 (Product of P and Izo) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and Plzo with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.展开更多
Inter-annual variability in total precipitation can lead to significant changes in carbon flux.In this study,we used the eddy covariance(EC) technique to measure the net CO_2 ecosystem exchange(NEE) of an alpine m...Inter-annual variability in total precipitation can lead to significant changes in carbon flux.In this study,we used the eddy covariance(EC) technique to measure the net CO_2 ecosystem exchange(NEE) of an alpine meadow in the northern Tibetan Plateau.In 2005 the meadow had precipitation of 489.9 mm and in 2006 precipitation of 241.1 mm,which,respectively,represent normal and dry years as compared to the mean annual precipitation of 476 mm.The EC measured NEE was 87.70 g C m^(-2) yr^(-1) in 2006 and-2.35 g C m^(-2) yr^(-1) in 2005.Therefore,the grassland was carbon neutral to the atmosphere in the normal year,while it was a carbon source in the dry year,indicating this ecosystem will become a CO_2 source if climate warming results in more drought conditions.The drought conditions in the dry year limited gross ecosystem CO_2 exchange(GEE),leaf area index(LAI) and the duration of ecosystem carbon uptake.During the peak of growing season the maximum daily rate of NEE and Pmax and a were approximately 30%-50% of those of the normal year.GEE and NEE were strongly related to photosynthetically active radiation(PAR) on half-hourly scale,but this relationship was confounded by air temperature(Ta),soil water content(SWC) and vapor pressure deficit(VPD).The absolute values of NEE declined with higher Ta,higher VPD and lower SWC conditions.Beyond the appropriate range of PAR,high solar radiation exacerbated soil water conditions and thus reduced daytime NEE.Optimal T_a and VPD for maximum daytime NEE were 12.7℃ and 0.42 KPa respectively,and the absolute values of NEE increased with SWC.Variation in LAI explained around 77% of the change in GEE and NEE.Variations in R_e were mainly controlled by soil temperature(T_s),whereas soil water content regulated the responses of R_e to T_s.展开更多
基金Supported jointly by the Ministry of Science and Technology of China under Grant No. 2002ccd00100the National Natural Science Foundation of China under Grant No. 40375025.
文摘Using a 40-yr dally precipitation dataset including 134 stations from 1962 to 2001, the large-scale distribution patterns of precipitation anomalies over East China are investigated in the present paper. In the phase space spanned by the first 8 EOFs generated from the 20-day low-pass filtered data, the six rainfall regimes (RRs) are identified by applying a cluster analysis method, namely, the northeastern China regime, Yellow River regime, Qinling Mountain-Hualhe River regime, Yangtze River with its south regime, South China regime, and rainless regime. Analyses show that the new RRs exhibit good persistence and evident physical sense, and excellently represent both of countrywide and regional features, which also demonstrate the inhomogeneity of multi-dimensional phase space. ~rthermore, it is more important that the new RRs can describe intraseasonal dynamic characteristics of large-scale rainfall anomalies, which is the most significant difference between the new RRs and the conventional seasonal mean rainfall patterns. On the other hand, the climatic characteristics of dally distributions of the RRs events, as well as the 40-year panorama of the RRs occurring are also investigated, which further document rationality and objectivity of the RRs with intraseasonal variability, and are likely to present more helpful information for short-term climate prediction, compared with other previous classical rainfall patterns.
基金Under the auspices of the National Key Research and Development Program of China(No.2016YFC0501602,2017YFC0504701)National Natural Science Foundation of China(No.41877539)。
文摘Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust(Robinia pseudoacacia) plantations(RP plantations), which are widely planted due to R. pseudoacacia being an excellent pioneer species. Characterizing the response of soil moisture to rainfall events at different stages of restoration is important for assessing the sustainability of restoration in RP plantations. In this study, we quantified the response of soil moisture to rainfall events at different years of restoration(15, 20 and 30 yr) representing different restoration stages in RP plantations in a typical hilly-gully area, i.e., the Yangjuangou Catchment, of the Loess Plateau, China. Over the growing season(June to September) of 2017, smart probes were placed at nine depths(10, 20, 40, 60, 80, 100, 120, 150, and 180 cm below the soil surface) to obtain volumetric soil water information at 30-min intervals in the three RP plantations. The advance of the wetting front was depicted, and the total cumulative water infiltration was measured. Soil moisture was mainly replenished by eight heavy rainfall events(mean rainfall amount = 46.3 mm), accounting for 88.7% of the rainfall during the growing season. The mean soil moisture content profiles of RP plantations at the three restoration stages were ordered as 30-yr(14.07%) > 20-yr(10.12%) > 15-yr(8.03%), and this relationship displayed temporal stability. Soil moisture was primarily replenished by rainfall at the 0-60 cm soil depth, and soil moisture remained stable below the 100-cm soil depth. The rainfall regime influenced the advancement of the wetting front. Here, a single rainfall event of 30 mm was the rainfall threshold for infiltration into the 60-cm soil layer. The total infiltration time ranged from 310.5-322.0 h, but no significant differences were found among RP plantations at different restoration stages. Young and old RP plantations had more total infiltration(more than 228.2 mm) and deeper infiltration depths(80-100 cm) than middle-aged plantations. The RP plantation at the intermediate restoration stage exhibited minimal total infiltration(174.2 mm) and a shallow infiltration depth(60 cm) due to the soil physical structure of the plot, which may have limited rain infiltration. More stand conditions that may affect infiltration should be considered for priority afforestation areas.
基金supported by the National Natural Science Foundation of China(Grant No.41271299)by the Opening Fund of MWR Laboratory of Soil and Water Loss Process and Control in the Loess Plateau of China(Grant NO.2017001)
文摘Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and Iso values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI30 (Product of P and Izo) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and Plzo with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.
基金National Natural Science Foundation of China(41271067)National key research and development program(2016YFC0502001)
文摘Inter-annual variability in total precipitation can lead to significant changes in carbon flux.In this study,we used the eddy covariance(EC) technique to measure the net CO_2 ecosystem exchange(NEE) of an alpine meadow in the northern Tibetan Plateau.In 2005 the meadow had precipitation of 489.9 mm and in 2006 precipitation of 241.1 mm,which,respectively,represent normal and dry years as compared to the mean annual precipitation of 476 mm.The EC measured NEE was 87.70 g C m^(-2) yr^(-1) in 2006 and-2.35 g C m^(-2) yr^(-1) in 2005.Therefore,the grassland was carbon neutral to the atmosphere in the normal year,while it was a carbon source in the dry year,indicating this ecosystem will become a CO_2 source if climate warming results in more drought conditions.The drought conditions in the dry year limited gross ecosystem CO_2 exchange(GEE),leaf area index(LAI) and the duration of ecosystem carbon uptake.During the peak of growing season the maximum daily rate of NEE and Pmax and a were approximately 30%-50% of those of the normal year.GEE and NEE were strongly related to photosynthetically active radiation(PAR) on half-hourly scale,but this relationship was confounded by air temperature(Ta),soil water content(SWC) and vapor pressure deficit(VPD).The absolute values of NEE declined with higher Ta,higher VPD and lower SWC conditions.Beyond the appropriate range of PAR,high solar radiation exacerbated soil water conditions and thus reduced daytime NEE.Optimal T_a and VPD for maximum daytime NEE were 12.7℃ and 0.42 KPa respectively,and the absolute values of NEE increased with SWC.Variation in LAI explained around 77% of the change in GEE and NEE.Variations in R_e were mainly controlled by soil temperature(T_s),whereas soil water content regulated the responses of R_e to T_s.