期刊文献+
共找到16,346篇文章
< 1 2 250 >
每页显示 20 50 100
Probabilistic back-analysis of rainfall-induced landslides for slope reliability prediction with multi-source information
1
作者 Shui-Hua Jiang Hong-Hu Jie +2 位作者 Jiawei Xie Jinsong Huang Chuang-Bing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3575-3594,共20页
Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(includi... Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(including test data,monitored data,field observation and slope survival records)is rarely used in current probabilistic back-analysis.Conducting the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating multi-source information is a challenging task since thousands of random variables and high-dimensional likelihood function are usually involved.In this paper,a framework by integrating a modified Bayesian Updating with Subset simulation(mBUS)method with adaptive Conditional Sampling(aCS)algorithm is established for the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction.Within this framework,the high-dimensional probabilistic back-analysis problem can be easily tackled,and the multi-source information(e.g.monitored pressure heads and slope survival records)can be fully used in the back-analysis.A real Taoyuan landslide case in Taiwan,China is investigated to illustrate the effectiveness and performance of the established framework.The findings show that the posterior knowledge of soil parameters obtained from the established framework is in good agreement with the field observations.Furthermore,the updated knowledge of soil parameters can be utilized to reliably predict the occurrence probability of a landslide caused by the heavy rainfall event on September 12,2004 or forecast the potential landslides under future rainfalls in the Fuhsing District of Taoyuan City,Taiwan,China. 展开更多
关键词 rainfall-induced landslide Spatial variability Probabilistic back-analysis Slope reliability analysis Bayesian updating
下载PDF
Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province,China
2
作者 Tao Li Chen-chen Xie +3 位作者 Chong Xu Wen-wen Qi Yuan-dong Huang Lei Li 《China Geology》 CAS CSCD 2024年第2期315-329,共15页
Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machin... Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County. 展开更多
关键词 landslide hazard Heavy rainfall Harzard mapping Hazard assessment Automated machine learning Shallow landslide Visual interpretation Luhe County Geological hazards survey engineering
下载PDF
Sensitivity analysis of regional rainfall-induced landslide based on UAV photogrammetry and LSTM neural network
3
作者 ZHAO Lian-heng XU Xin +3 位作者 LYU Guo-shun HUANG Dong-liang LIU Min CHEN Qi-min 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3312-3326,共15页
Rainfall stands out as a critical trigger for landslides,particularly given the intense summer rainfall experienced in Zheduotang,a transitional zone from the southwest edge of Sichuan Basin to Qinghai Tibet Plateau.T... Rainfall stands out as a critical trigger for landslides,particularly given the intense summer rainfall experienced in Zheduotang,a transitional zone from the southwest edge of Sichuan Basin to Qinghai Tibet Plateau.This area is characterized by adverse geological conditions such as rock piles,debris slopes and unstable slopes.Furthermore,due to the absence of historical rainfall records and landslide inventories,empirical methods are not applicable for the analysis of rainfall-induced landslides.Thus we employ a physically based landslide susceptibility analysis model by using highprecision unmanned aerial vehicle(UAV)photogrammetry,field boreholes and long short term memory(LSTM)neural network to obtain regional topography,soil properties,and rainfall parameters.We applied the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability(TRIGRS)model to simulate the distribution of shallow landslides and variations in porewater pressure across the region under different rainfall intensities and three rainfall patterns(advanced,uniform,and delayed).The landslides caused by advanced rainfall pattern mostly occurred in the first 12 hours,but the landslides caused by delayed rainfall pattern mostly occurred in the last 12 hours.However,all the three rainfall patterns yielded landslide susceptibility zones categorized as high(1.16%),medium(8.06%),and low(90.78%).Furthermore,total precipitation with a rainfall intensity of 35 mm/h for 1 hour was less than that with a rainfall intensity of 1.775 mm/h for 24hours,but the areas with high and medium susceptibility increased by 3.1%.This study combines UAV photogrammetry and LSTM neural networks to obtain more accurate input data for the TRIGRS model,offering an effective approach for predicting rainfall-induced shallow landslides in regions lacking historical rainfall records and landslide inventories. 展开更多
关键词 Regional landslide TRIGRS UAV photography Rainfall landslide LSTM neural network
下载PDF
Strength softening models of soil and its application in rainfall-induced landslide simulation 被引量:3
4
作者 Zhendong Fu Jiachun Li 《Theoretical & Applied Mechanics Letters》 CAS 2013年第4期23-28,共6页
In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. Ac... In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. According to the ratio of two time scales available, the model can be classified into three categories, i.e., instant softening model, delay softening model, and coupling softening model. Corresponding evolution functions are specified to represent these kinds of softening processes and then applied to simulate landslide of homogeneous slopes triggered by rainfall, therefrom, useful conclusions can be drawn in the end. 展开更多
关键词 homogeneous slope numerical simulation strength softening model rainfall-induced landslide geological disaster
下载PDF
Failure analysis on a heavy rainfall-induced landslide in Huay Khab Mountain in Northern Thailand
5
作者 Veerayut KOMOLVILAS Weeradetch TANAPALUNGKORN +1 位作者 Panon LATCHAROTE Suched LIKITLERSUANG 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2580-2596,共17页
On 28 th July 2018,a massive landslide occurred in a mountainous area in Northern Thailand.The landslide after ten days of heavy rainfall generated the movement of uphill mountain soil into the populated village.This ... On 28 th July 2018,a massive landslide occurred in a mountainous area in Northern Thailand.The landslide after ten days of heavy rainfall generated the movement of uphill mountain soil into the populated village.This study presents a comprehensive failure analysis of local rainfallinduced landslides based on topographical and geological information.Rainfall measurement data were gathered from two rainfall stations close to the study area.The rainfall records show that the total monthly rainfalls in 2018 were significantly higher than the average monthly rainfalls over the past decade.Site investigation started with an unmanned aerial photogrammetric survey to generate a digital elevation model.Then,dynamic probing test,microtremor survey,and electrical resistivity survey were carried out along undisturbed soils beside the failed slope to evaluate the thickness of the soft soil cover on top of the rock basement.During the site survey,residual soil samples were collected to determine engineering properties in the laboratory.Finally,a slope stability analysis was performed to assess the landslide hazard based on the results of aerial photogrammetric survey,field exploration,and laboratory tests.The slope stability analysis and rainfall records revealed that the Huay Khab landslide was mainly caused by an increase in the water content of residual soils due to the prolonged rainfall which led to a sharp decrease in the shear strength.This leads to the conclusion that the proposed landslide investigation program could be used to assess the potential of landslide failure due to prolonged rainfall on a local scale. 展开更多
关键词 rainfall-induced landslide Field exploration Digital Elevation Model Slope stability analysis Northern Thailand
下载PDF
Examination of Rainfall-Induced Landslide Failure Mechanisms via a Centrifuge Physical Simulation Test 被引量:1
6
作者 Shan Dong Wenkai Feng +2 位作者 Yibo Yin Rui Hu Hongchuan Dai 《Open Journal of Geology》 2019年第13期1004-1021,共18页
Rainfall is one of the most important factors contributing to landslides, and gentle bedding incline, high-rainfall induced landslides are common throughout the world. Field observations and theoretical analyses have ... Rainfall is one of the most important factors contributing to landslides, and gentle bedding incline, high-rainfall induced landslides are common throughout the world. Field observations and theoretical analyses have been used to assess slope instability caused by permeability variation. In this study, the influence of rainfall infiltration on gentle bedding incline slope behaviour was investigated using a centrifuge physical simulation test. The magnitude, pattern and development of pore water and earth pressure at the interface;the shear failure surface features;and the corresponding deformation and failure processes were considered. A model with interbedded sand and mud was created, and a centrifuge was used to simulate both natural and rainfall conditions. The weak intercalation was composed of single-material silty clay, and the landslide mass was composed of red-bed sandstone. A combination of photography, pore water pressure measurements and earth pressure measurements were used to examine the relationship between the pore water pressure, earth pressure and failure modes. When the slope experiences overall instability, the curves of the earth pressure and pore water pressure dramatically decrease. The results reveal that the failure shear surface largely depends on the differential creep caused by the properties of the rock mass and the rainfall infiltration. 展开更多
关键词 rainfall-induced landslide CENTRIFUGE PHYSICAL Simulation Test Earth PRESSURE PORE Water PRESSURE Deformation and Failure Processes
下载PDF
Rapid Geometry Analysis for Earthquake-induced and Rainfall-induced Landslide Dams in Taiwan 被引量:2
7
作者 Kun-Ting CHEN Yu-Shu KUO Chjeng-Lun SHIEH 《Journal of Mountain Science》 SCIE CSCD 2014年第2期360-370,共11页
Stability analysis of the dam is important for disaster prevention and reduction. The dam's geometry plays an important role in understanding its stability. This study develops a rapid landslide dam geometry asses... Stability analysis of the dam is important for disaster prevention and reduction. The dam's geometry plays an important role in understanding its stability. This study develops a rapid landslide dam geometry assessment method for both earthquake-induced and rainfall-induced landslide dams based on nine real cases collected in Chinese Taipei and 214 cases collected worldwide. For simplification purposes, a landslide dam is classified into triangular or trapezoidal. The rapid landslide dam geometry assessment method in this paper uses only satellite maps and the topographic maps to get landslide area, and then analyze the dam geometry. These maps are used to evaluate the area of the landslide and the slope of the river bed. Based on the evaluation information, the proposed method can calculate dam height, the length of the dam, and the angles of the dam in both upstream and downstream directions. These geometry parameters of a landslide dam provide important information for further dam stability analysis. The proposed methodology is applied to a real landslide dam case at Hsiaolin Village. The result shows that the proposed method can be used to assess the landslide dam geometry. 展开更多
关键词 landslide dam Dam geometry Dam stability analysis
下载PDF
Numerical Simulation of Rainfall-induced Xianchi Reservoir Landslide in Yunyang,Chongqing,China 被引量:1
8
作者 YAN Jinkai MA Yan +2 位作者 LIU Lei WANG Zhihui REN Tianxiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期505-517,共13页
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m... A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere. 展开更多
关键词 GEOHAZARDS landslide post-failure rapid and long runout ring shear test
下载PDF
Rainfall early warning threshold and its spatial distribution of rainfall-induced landslides in China
9
作者 Hongqiang Dou Rui Wang +1 位作者 Hao Wang Wenbin Jian 《Rock Mechanics Bulletin》 2023年第3期93-105,共13页
In order to investigate the spatial distribution of early warning threshold for landslide induced by rainfall in China,the literatures about rainfall thresholds of landslides in China in recent 20 years are selected.S... In order to investigate the spatial distribution of early warning threshold for landslide induced by rainfall in China,the literatures about rainfall thresholds of landslides in China in recent 20 years are selected.Statistical analysis and visualization methods were employed to systematically analyze the research progress of rainfall early warning thresholds at various scales.Taking the typical rainfall intensity-duration(I-D)threshold model as the research object,combined with the geographical characteristics of China and the average annual rainfall of 20 years,the spatial distribution of early warning thresholds for rainfall-induced landslide in China is depicted.The results show that the inspired rain intensity coefficientαof the rainfall threshold(I-D curve)in China roughly increases gradually with the decrease of topography.Moreover,under consistent annual rainfall conditions,the scalar indexβexhibits regular changes corresponding to variations in terrain.Topography and rainfall are the two main factors strongly associated with the rainfall threshold.This research establishes a clear framework for studying the early warning thresholds for rainfall-induced landslides in China and holds significant scientific implications for developing more effective rainfall threshold models. 展开更多
关键词 rainfall-induced landslide Early warning threshold Literature research Statistical analysis Spatial distribution
原文传递
Visualization analysis of rainfall-induced landslides hazards based on remote sensing and geographic information system-an overview
10
作者 Zhengli Yang Heng Lu +9 位作者 Zhijie Zhang Chao Liu Ruihua Nie Wanchang Zhang Gang Fan Chen Chen Lei Ma Xiaoai Dai Min Zhang Donghui Zhang 《International Journal of Digital Earth》 SCIE EI 2023年第1期2374-2402,共29页
In recent years,RS and GIS technologies have played an increasingly important role in various aspects of rainfall induced landslide research.In order to systematically understand their application situation,this paper... In recent years,RS and GIS technologies have played an increasingly important role in various aspects of rainfall induced landslide research.In order to systematically understand their application situation,this paper extensively used various visualization analysis technologies for in-depth analysis of 1,161 documents collected by the WOS data platform in the past 27 years by combining quantitative and qualitative methods.Then,this article focuses on sub domain analysis from four aspects:landslide detection and monitoring,prediction models,sensitivity mapping,and risk assessment.The study found that the number of literature in thisfield has steadily increased and is expected to continue to rise.This literature review has attracted widespread attention from the academic community,but it challenging to meet research needs.Frequent and effective cooperationis between countries,institutions,and authors is very beneficial for promoting progress in thisfield.The future development direction is a new intelligent hybrid model that integrates multiple research methods.This study can provide researchers in thisfield with the core research force,hot topic evolution,and future development trends of future rainfall-induced landslides and contribute to landslide prevention and control decision-making and achieving the United Nations’sustainable development goals. 展开更多
关键词 landslide rainfall-induced detection and monitoring predictive model sensitivity mapping risk assessment visual analysis
原文传递
GIS-based prediction method of shallow landslides induced by heavy rainfall in large mountainous areas
11
作者 LUO Xiaoxiong LI Congjiang ZHOU Jiawen 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1534-1548,共15页
Rainwater runoff that does not infiltrate the soil during heavy rainfall may increase slope instability. The effect of runoff is usually neglected in conventional rainfall-induced slope failure analysis to simplify th... Rainwater runoff that does not infiltrate the soil during heavy rainfall may increase slope instability. The effect of runoff is usually neglected in conventional rainfall-induced slope failure analysis to simplify the model. To analyze the effect of runoff on slope stability, this study simultaneously simulated the effects of surface runoff and rainfall infiltration on bank slopes in the Three Gorges Reservoir Area. A shallow slope failure method that can be used to analyze runoff was proposed based on the modified Green-Ampt model, the simplified Saint-Venant model, and the infinite slope model. In this model, the modified Green–Ampt model was used to estimate the rainfall infiltration capacity and the wetting front depth. The eight-flow(D8) method and the simplified Saint-Venant model were selected to estimate the distribution of runoff. By considering the wetting front depth as the slip surface depth, the factor of safety of the slope could be determined using the infinite slope stability model. A comparison of the different models reveals that runoff can escalate the instability of certain slopes, causing stable slopes to become unstable. Comparison of the unstable areas obtained from the simulation with the actual landslide sites shows that the model proposed in this study can successfully predict landslides at these sites. The slope instability assessment model proposed in this study offers an alternative approach for estimating high-risk areas in large mountainous regions. 展开更多
关键词 rainfall-induced landslide Surface runoff INFILTRATION Geographic Information System landslide susceptibility
下载PDF
How do the landslide and non-landslide sampling strategies impact landslide susceptibility assessment? d A catchment-scale case study from China 被引量:2
12
作者 Zizheng Guo Bixia Tian +2 位作者 Yuhang Zhu Jun He Taili Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期877-894,共18页
The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenz... The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM. 展开更多
关键词 landslide susceptibility Sampling strategy Machine learning Random forest China
下载PDF
Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position 被引量:1
13
作者 Faming Huang Ronghui Li +3 位作者 Filippo Catani Xiaoting Zhou Ziqiang Zeng Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ... The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies. 展开更多
关键词 landslide susceptibility prediction Random landslide position errors Uncertainty analysis Multi-layer perceptron Random forest Semi-supervised machine learning
下载PDF
Fiber optic monitoring of an anti-slide pile in a retrogressive landslide 被引量:3
14
作者 Lei Zhang Honghu Zhu +1 位作者 Heming Han Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期333-343,共11页
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods... Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions. 展开更多
关键词 Anti-slide pile Multi-sliding surface Pile-soil interface Brillouin optical time domain reflectometry (BOTDR) Geotechnical monitoring Reservoir landslide
下载PDF
Displacement field reconstruction in landslide physical modeling by using a terrain laser scanner e Part 2:Application and large strain/displacement and water effect analysis 被引量:1
15
作者 Dongzi Liu Xingcheng Gong +3 位作者 Hongping Wang Xinli Hu Wenbo Zheng Xinyu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4077-4087,共11页
Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a... Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects. 展开更多
关键词 Laser scanner landslideS Physical modeling Deformation field
下载PDF
Time series prediction of reservoir bank landslide failure probability considering the spatial variability of soil properties 被引量:2
16
作者 Luqi Wang Lin Wang +3 位作者 Wengang Zhang Xuanyu Meng Songlin Liu Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3951-3960,共10页
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab... Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models. 展开更多
关键词 Machine learning(ML) Reservoir bank landslide Spatial variability Time series prediction Failure probability
下载PDF
Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves 被引量:3
17
作者 Xiao Ye Hong-Hu Zhu +4 位作者 Gang Cheng Hua-Fu Pei Bin Shi Luca Schenato Alessandro Pasuto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1018-1032,共15页
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th... Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system. 展开更多
关键词 Reservoir landslide Thermo-hydro-poro-mechanical response Ultra-weak fiber bragg grating(UWFBG) subsurface evolution Engineering geological interface Geotechnical monitoring
下载PDF
Spatiotemporal deformation characteristics of Outang landslide and identification of triggering factors using data mining 被引量:1
18
作者 Beibei Yang Zhongqiang Liu +1 位作者 Suzanne Lacasse Xin Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4088-4104,共17页
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli... Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas. 展开更多
关键词 landslide Deformation characteristics Triggering factor Data mining Three gorges reservoir
下载PDF
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China 被引量:1
19
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake Coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault Earthquake fault
下载PDF
Multistate transition and coupled solid-liquid modeling of motion process of long-runout landslide 被引量:1
20
作者 Yang Gao Yueping Yin +3 位作者 Bin Li Han Zhang Weile Wu Haoyuan Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2694-2714,共21页
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical... The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction. 展开更多
关键词 Long-runout landslide Multistate transition Mixed solid‒liquid flow Post-failure process Numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部