期刊文献+
共找到335篇文章
< 1 2 17 >
每页显示 20 50 100
A soil quality index for evaluation of degradation under land use and soil erosion categories in a small mountainous catchment, Iran 被引量:2
1
作者 Kazem NOSRATI Adrian LCOLLINS 《Journal of Mountain Science》 SCIE CSCD 2019年第11期2577-2590,共14页
Soil erosion and land use type have long been viewed as being particularly important drivers of soil degradation.The objectives of this study,therefore,were to select a new soil quality index(SQI)which varies signific... Soil erosion and land use type have long been viewed as being particularly important drivers of soil degradation.The objectives of this study,therefore,were to select a new soil quality index(SQI)which varies significantly with land use/soil erosion,and to evaluate the new SQI using expert opinion.In total,18 soil physical,chemical,and biochemical properties(indicators)were measured on 56 soil samples collected from four land use/soil erosion categories(rangeland/surface erosion,rangeland/subsurface erosion,cultivated land/surface erosion and dry-farming land/surface erosion).Principal component and classification analysis(PCCA)identified five PCs that explained 77.7%of the variation in soil properties with the biochemical PC varying significantly with land use/soil erosion.General discriminant analysis(GDA)selected urease and clay as the most sensitive properties distinguishing the land use/soil erosion categories.The GDA canonical scores for the new SQI were significantly correlated with expert opinion soil surface summed scores(for soil movement,surface litter,pedestalling,rills and flow pattern)derived using the U.S.Department of the Interior Bureau of Land Management(BLM)method.A forward stepwise general regression model revealed that the new SQI values were explained by soil movement,surface litter,and the summed values of the soil surface factors.Overall,this study confirmed that soil quality in the study area in Iran is controlled by land use and corresponding soil erosion. 展开更多
关键词 SOIL quality index Land use erosion status SOIL ENZYME activities MULTIVARIATE statistical techniques
下载PDF
Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin,India 被引量:6
2
作者 Md Masroor Haroon Sajjad +5 位作者 Sufia Rehman Roshani Singh Md Hibjur Rahaman Mehebub Sahana Raihan Ahmed Ram Avtar 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期21-33,共13页
Drought is a natural phenomenon posing severe implications for soil,groundwater and agricultural yield.It has been recognized as one of the most pervasive global change drivers to affect the soil.Soil being a weakly r... Drought is a natural phenomenon posing severe implications for soil,groundwater and agricultural yield.It has been recognized as one of the most pervasive global change drivers to affect the soil.Soil being a weakly renewable resource takes a long time to form,but it takes no time to degrade.However,the response of soil to drought conditions as soil loss is not manifested in the existing literature.Thus,this study makes a concerted effort to analyze the relationship between drought conditions and soil erosion in the middle sub-basin of the Godavari River in India.MODIS remote sensing data was utilized for driving drought indices during 2000-2019.Firstly,we constricted Temperature condition index(TCI)and Vegetation Condition Index(VCI)from Land Surface Temperature(LST)and Enhanced Vegetation Index(EVI)derived from MODIS data.TCI and VCI were then integrated to determine the Vegetation Health Index(VHI).Revised Universal Soil Loss Equation(RUSLE)was utilized for estimating soil loss.The relationship between drought condition and vegetation was ascertained using the Pearson correlation.Most of the northern and southern watersheds experienced severe drought condition in the sub-basin during2000-2019.The mean frequency of the drought occurrence was 7.95 months.The average soil erosion in the sub-basin was estimated to be 9.88 t ha^(-1)year^(-1).A positive relationship was observed between drought indices and soil erosion values(r value being 0.35).However,wide variations were observed in the distribution of spatial correlation.Among various factors,the slope length and steepness were found to be the main drivers of soil erosion in the sub-basin.Thus,the study calls for policy measures to lessen the impact of drought and soil erosion. 展开更多
关键词 Drought vulnerability Soil erosion RUSLE Vegetation Health index(VHI) Godavari middle sub-basin
下载PDF
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia 被引量:1
3
作者 Olfa TERWAYET BAYOULI ZHANG Wanchang Houssem TERWAYET BAYOULI 《Journal of Arid Land》 SCIE CSCD 2023年第11期1269-1289,共21页
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre... Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments. 展开更多
关键词 DROUGHTS soil erosion vegetation health index(VHI) revised universal soil loss equation(RUSLE)model southeastern Tunisia
下载PDF
Assessment of soil erosion in the Irga watershed on the eastern edge of the Chota Nagpur Plateau,India 被引量:1
4
作者 Ratan PAL Buddhadev HEMBRAM Narayan Chandra JANA 《Regional Sustainability》 2024年第1期54-68,共15页
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg... Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures. 展开更多
关键词 Soil erosion Soil organic carbon rainfall-runoff erosivity factor Soil erodibility factor Slope length and steepness factor Cover-management factor Support practice factor Irga watershed
下载PDF
Association between body mass index and erosive esophagitis:A meta-analysis
5
作者 Nan cai Guo-Zhong Ji +5 位作者 Zhi-Ning Fan Yan-Feng Wu Fa-Ming Zhang Zhi-Fei Zhao Wei Xu Zheng Liu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第20期2545-2553,共9页
AIM:To conduct a meta-analysis to estimate the determinants of the association between erosive esophagitis (EE)and body mass index(BMI). METHODS:We identified the studies using PubMed. Studies were selected for analys... AIM:To conduct a meta-analysis to estimate the determinants of the association between erosive esophagitis (EE)and body mass index(BMI). METHODS:We identified the studies using PubMed. Studies were selected for analysis based on certain inclusion and exclusion criteria.Data were extracted from each study on the basis of predefined items.Metaanalyses were performed to verify the risk factors,such as obesity and gender. RESULTS:Twenty-one studies were included in this systematic review.These studies demonstrated an association between increasing BMI and the presence of EE[95%confidence interval(CI):1.35-1.88,overweight,odds ratio(OR)=1.60,P value homogeneity =0.003,95%CI:1.65-2.55,obese,OR=2.05,P< 0.01].The heterogeneity disappeared by stratifying for gender.No publication bias was observed in this metaanalysis by the Egger method. CONCLUSION:This analysis demonstrates a positive association between BMI and the presence of EE,especially in males.The risk seems to progressively increase with increasing weight. 展开更多
关键词 erosive esophagitis Gastroesophageal reflux disease OBESITY Body mass index META-ANALYSIS
下载PDF
Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau,China 被引量:12
6
作者 HE Qian DAI Xiao'ai CHEN Shiqi 《Journal of Arid Land》 SCIE CSCD 2020年第5期865-886,共22页
Soil erosion in the Three-River Headwaters Region(TRHR)of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment.Vegetation and precipitation are considere... Soil erosion in the Three-River Headwaters Region(TRHR)of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment.Vegetation and precipitation are considered to be the main factors for the variation in soil erosion.However,it is a big challenge to analyze the impacts of precipitation and vegetation respectively as well as their combined effects on soil erosion from the pixel scale.To assess the influences of vegetation and precipitation on the variation of soil erosion from 2005 to 2015,we employed the Revised Universal Soil Loss Equation(RUSLE)model to evaluate soil erosion in the TRHR,and then developed a method using the Logarithmic Mean Divisia Index model(LMDI)which can exponentially decompose the influencing factors,to calculate the contribution values of the vegetation cover factor(C factor)and the rainfall erosivity factor(R factor)to the variation of soil erosion from the pixel scale.In general,soil erosion in the TRHR was alleviated from 2005 to 2015,of which about 54.95%of the area where soil erosion decreased was caused by the combined effects of the C factor and the R factor,and 41.31%was caused by the change in the R factor.There were relatively few areas with increased soil erosion modulus,of which 64.10%of the area where soil erosion increased was caused by the change in the C factor,and 23.88%was caused by the combined effects of the C factor and the R factor.Therefore,the combined effects of the C factor and the R factor were regarded as the main driving force for the decrease of soil erosion,while the C factor was the dominant factor for the increase of soil erosion.The area with decreased soil erosion caused by the C factor(12.10×10^3 km^2)was larger than the area with increased soil erosion caused by the C factor(8.30×10^3 km^2),which indicated that vegetation had a positive effect on soil erosion.This study generally put forward a new method for quantitative assessment of the impacts of the influencing factors on soil erosion,and also provided a scientific basis for the regional control of soil erosion. 展开更多
关键词 soil erosion vegetation cover rainfall erosivity Logarithmic Mean Divisia index quantitative assessment Three-River Headwaters Region
下载PDF
Dynamic Monitoring of Plant Cover and Soil Erosion Using Remote Sensing, Mathematical Modeling, Computer Simulation and GIS Techniques 被引量:8
7
作者 Z. Y. Zeng J. Z. Cao +4 位作者 Z. J. Gu Z. L. Zhang W. Zheng Y. Q. Cao H. Y. Peng 《American Journal of Plant Sciences》 2013年第7期1466-1493,共28页
Dynamic monitoring of plant cover and soil erosion often uses remote sensing data, especially for estimating the plant cover rate (vegetation coverage) by vegetation index. However, the latter is influenced by atmosph... Dynamic monitoring of plant cover and soil erosion often uses remote sensing data, especially for estimating the plant cover rate (vegetation coverage) by vegetation index. However, the latter is influenced by atmospheric effects and methods for correcting them are still imperfect and disputed. This research supposed and practiced an indirect, fast, and operational method to conduct atmospheric correction of images for getting comparable vegetation index values in different times. It tries to find a variable free from atmospheric effects, e.g., the mean vegetation coverage value of the whole study area, as a basis to reduce atmospheric correction parameters by establishing mathematical models and conducting simulation calculations. Using these parameters, the images can be atmospherically corrected. And then, the vegetation index and corresponding vegetation coverage values for all pixels, the vegetation coverage maps and coverage grade maps for different years were calculated, i.e., the plant cover monitoring was realized. Using the vegetation coverage grade maps and the ground slope grade map from a DEM to generate soil erosion grade maps for different years, the soil erosion monitoring was also realized. The results show that in the study area the vegetation coverage was the lowest in 1976, much better in 1989, but a bit worse again in 2001. Towards the soil erosion, it had been mitigated continuously from 1976 to 1989 and then to 2001. It is interesting that a little decrease of vegetation coverage from 1989 to 2001 did not lead to increase of soil erosion. The reason is that the decrease of vegetation coverage was chiefly caused by urbanization and thus mainly occurred in very gentle terrains, where soil erosion was naturally slight. The results clearly indicate the details of plant cover and soil erosion change in 25 years and also offer a scientific foundation for plant and soil conservation. 展开更多
关键词 ATMOSPHERIC CORRECTION Field Measurement Modeling Regression Simulation Soil erosION VEGETATION COVERAGE VEGETATION index
下载PDF
The Effects of Land Use and Landscape Position on Labile Organic Carbon and Carbon Management Index in Red Soil Hilly Region,Southern China 被引量:8
8
作者 LI Zhong-wu NIE Xiao-dong +3 位作者 CHEN Xiao-lin LU Yin-mei JIANG Wei-guo ZENG Guang-ming 《Journal of Mountain Science》 SCIE CSCD 2015年第3期626-636,共11页
Labile organic carbon (LOC) and carbon management index (CMI), which are sensitive factors to the changes of environment, can improve evaluating the effect of land management practices changes on soil quality. The... Labile organic carbon (LOC) and carbon management index (CMI), which are sensitive factors to the changes of environment, can improve evaluating the effect of land management practices changes on soil quality. The objective of this study was to investigate the effects of land use types and landscape positions on soil quality as a function of L0C and CMI. A field study in a small watershed in the red soil hilly region of southern China was conducted, and soil samples were collected from four typical lands (pine forest (PF) on slope land, barren hill (BH) on slope land, citrus orchard (C0) on terrace land and Cinnarnornum Camphora (CC) on terrace land) at a sampling depth of 20 cm. Soil nutrients, soil organic carbon (SOC), L0C and CMI were measured. Results showed that the L0C and CMI correlated to not only soil carbon but also soil nutrients, and the values of LOC and CMI in different land use types followed the order CC 〉 PF 〉 CO 〉 BH at the upper- slope, while CO 〉 CC 〉 BH 〉 PF at mid-slope and down-slope. With respect to slope positions, the values of LOC and CMI in all the lands were followed the order: upper-slope 〉 down-slope 〉 mid- slope. As whole, the mean values of LOC and CMI in different lands followed the order CC 〉 CO 〉 PF 〉 BH. High CMI and LOC content were found in the terrace lands with broadleaf vegetations. These results indicated that the terracing and appropriate vegetations can increase the carbon input and lability and decrease soil erosion. However, the carbon pools and CMI in these lands were significantly lower than that in reference site. This suggested that it may require a long time for the soil to return to a high~ quality. Consequently, it is an efficient way to adopt the measures of terracing and appropriate vegetations planting in improving the content of LOC and CMI and controlling water and soil loss in fragile ecosystems. 展开更多
关键词 Carbon pool index (CPI) Lability index(LI) Non-labile organic carbon (NLOC) Soil organiccarbon (SOC) Soil erosion
下载PDF
Mapping surface water erosion potential in the Soummam watershed in Northeast Algeria with RUSLE model 被引量:2
9
作者 Youcef SAHLI Elhadj MOKHTARI +3 位作者 Belkacem MERZOUK Benoit LAIGNEL Christophe VIAL Khodir MADANI 《Journal of Mountain Science》 SCIE CSCD 2019年第7期1606-1615,共10页
The present study aims to estimate the annual soil loss in the Soummam watershed in the northeast of Algeria,using the Revised Universal Soil Loss Equation(RUSLE),geographic information system(GIS),and remote sensing(... The present study aims to estimate the annual soil loss in the Soummam watershed in the northeast of Algeria,using the Revised Universal Soil Loss Equation(RUSLE),geographic information system(GIS),and remote sensing(RS).RUSLE model has been used for modelling the main factors involved in erosive phenomena.The Soummam watershed covers a surface area of 9108.45 km^2 of irregular shape,northeast–southwest towards southeast.It is characterized by an altitude varying between 2 m in the northeast and 2308 m in the northwest.Results showed that the average erosivity factor(R)is 70.64(MJ·mm)/(ha·h·year)and the maximum value reaches 140(MJ·mm)/(ha·h·year),the average soil erodibility factor(K)is 0.016(t·h·ha)/(MJ·ha·mm)and maximum values reach 0.0204(t·h·ha)/(MJ·ha·mm)in the southeast regions of the watershed,the average slope length and steepness factor(LS)is 9.79 and the mean C factor is estimated to be 0.62.Thematic maps integration of different factors of RUSLE in GIS with their database,allowed with a rapid and efficient manner to highlight complexity and factors interdependence in the erosion risk analyses.The resulting map for soils losses,with an average erosion rate of 6.81 t/(ha·year)shows a low erosion(<7.41 t/(ha·year))which covers 73.46%of the total area of the basin,and a medium erosion(7.42 to 19.77 t/(ha·year)),which represents 17.66%of the area.Areas with extreme erosion risk exceeding 32.18 t/(ha·year)cover more than 3.54%of the basin area.The results can certainly aid in implementation of soil management and conservation practices to reduce the soil erosion in the Soummam watershed. 展开更多
关键词 Soummam WATERSHED SOIL erosION Revised Universal SOIL Loss Equation Remote sensing Normalized DIFFERENCE VEGETATION index
下载PDF
Modelling the Soil Loss in the Watershed of the Chaddad Wadi in Terms of Both Rockiness and Soil Slaking Indexes 被引量:2
10
作者 Naima Azaiez Arif 《International Journal of Geosciences》 2020年第3期100-124,共25页
Currently we are at a phase where morphogenesis is gaining more prominence and dimension regarding the pedogenesis. The numerous multidisciplinary studies on the soil showed that the erosive action as well as the vari... Currently we are at a phase where morphogenesis is gaining more prominence and dimension regarding the pedogenesis. The numerous multidisciplinary studies on the soil showed that the erosive action as well as the various problems that result from it, bring out a very serious state of soil degradation in the semi-arid field [1]-[9]. Several attempts have established to set empirical and experimental methods for a quantitative estimation of soil loss caused by diffuse erosion. In this perspective, this research intends to track soil losses in the watershed of the Chaddad wadi, the average-flowing stream of the Nebhana wadi belonging to the lower semi-arid field. The main stream and its tributaries drain an area of 26.5 km2 from the eastern slopes of Ejhaf mountain (517 m) and Fartout mountain (476 m), as well as the southern slope of Ediour mountain (405 m). The dividing line of the waters with the Khalfallah wadi and Bel Assoued wadi is caused by rows of hills with an altitude ranging between 220 m and 306 m such as the hills of Sidi Salah and those of Es-Souida and Ain Fres. The Wischmeier Equation will be improved by two corrective parameters: the rockiness on the one hand and the soil slaking index on the other, aiming to develop and optimize the potential of this empirical model. This application allowed overcoming some of the limitations that came with the Wischmeier equation, which is primarily designed for an application within different physical conditions on the scale of a land plot. This research is an opportunity to make a detailed contribution to the potential sensitivity of the watershed to water erosion. A good demarcation of the physical anthropogenic framework of the erosive action will provide substantial support in terms of soil protection and the stabilization of watersheds emitting sediments. 展开更多
关键词 Drainage Density index of SOIL Slaking CRUST Sheet erosion Stoniness index USLE
下载PDF
Cropland physical disturbance intensity: plot-scale measurement and its application for soil erosion reduction in mountainous areas 被引量:2
11
作者 LI Ming WANG Yu-kuan +3 位作者 XU Pei FU Bin TIAN Cong-shan WANG Shan 《Journal of Mountain Science》 SCIE CSCD 2018年第1期198-210,共13页
Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation.Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of bioph... Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation.Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of biophysical conditions and differences in farmers'management behavior.The main purpose of this paper is to develop a composite index of cropland physical disturbance intensity(CLDI)to reflect the plot-scale discrepancy of potential soil erosion in mountainous areas.The study was based on both plot survey and household interview data,collected from six typical catchments in mountainous areas of southwestern China.Four kinds of physical disturbance practices and two kinds of conservation practices during one crop rotation period were synthesized to develop the CLDI index.The rough set theory was referenced to avoid subjectivity during weight allocation.The results show that conventional tillage,deep fertilization,and manual weeding are the main causes of cropland soil erosion,whereas manure application in combination with seasonal fallow reduces soil erosion.Different crop types as well as cropland location factors determine the spatial pattern of CLDI.Crop rotation modes with major crops of tobacco and maize resulted in a maximal CLDI,and cropland plots with a distance radius of 150 meters away from households received the most intensive physical disturbance.These results are critical to help better protect rural environments in mountainous areas.Based on the results,methods to reduce cropland soil erosion are suggested. 展开更多
关键词 Cropland disturbance intensity Soil erosion Farming practices Farmers' behavior Rough set theory index development
下载PDF
Study on the Topographic Effect on Soil Erosion Using RUSLE Model for Small Size Watershed
12
作者 CHEN Chuan-sheng JIANG Xin 《水土保持研究》 CSCD 北大核心 2006年第5期186-187,192,共3页
Soil erosion and subsequent sedimentation have caused serious environmental and soil degradation problems in Okinawa Prefecture,Japan.This research aims at evaluating an availability of the Revised Universal Soil loss... Soil erosion and subsequent sedimentation have caused serious environmental and soil degradation problems in Okinawa Prefecture,Japan.This research aims at evaluating an availability of the Revised Universal Soil loss Equation(RUSLE) for predicting the range of soil loss values for the Nago watershed in Okinawa.It shows that climatic conditions substantially influence the rainfall amount as a function of the I30 of the rainfall event.The rate of soil loss is higher with increasing in altitude due to greater slope steepness.By rainfall data analysis,it is concluded that the large difference in soil loss between 2000 and 2001 was due to concentrated heavy rainfall in the rainy season or the typhoon season. 展开更多
关键词 RUSLE erosion index RAINFALL soil loss small size watershed
下载PDF
Development of a landscape index to link landscape pattern to runoff and sediment
13
作者 SHI Peng QIN Yan-li +2 位作者 LI Peng LI Zhan-bin CUI Ling-zhou 《Journal of Mountain Science》 SCIE CSCD 2022年第10期2905-2919,共15页
Linking landscape indexes to ecological processes is the key topic of landscape ecology.However,traditional landscape metrics based on the Patch-Mosaic Model have no ecological significance.In this study,the runoff-se... Linking landscape indexes to ecological processes is the key topic of landscape ecology.However,traditional landscape metrics based on the Patch-Mosaic Model have no ecological significance.In this study,the runoff-sediment landscape index coupling land use,topography,soil,and vegetation factors was constructed to link landscape patterns to runoff and sediment.In the study area,the runoffsediment landscape index at the class scale showed an increasing trend from 0.10 in 1995 to 0.26 in 2015.Cropland had a higher runoff-sediment landscape index compared to grassland or forestland.At the landscape scale,the runoff-sediment landscape index showed a decreasing trend since 1995;furthermore,it decreased by 36.24%in 2015 compared with the index in 1990.The runoff-sediment landscape index had higher correlations with runoff and sediment compared with traditional landscape metrics.Redundancy analysis showed that the runoffsediment landscape index had a higher contribution to runoff and sediment compared to traditional landscape metrics,explaining 90.1%of the variability.The soil erosion risk assessed by the runoff-sediment landscape index showed an increasing trend upstream of the Dali River watershed.More attention should be paid to this area in future vegetation restoration attempts,as exploring the impact of landscape pattern changes on ecological processes,especially hydrological processes,plays an important role in comprehensive watershed management. 展开更多
关键词 RUNOFF SEDIMENT Landscape index Process-oriented Soil erosion risk Landscape planning
下载PDF
Relationship between drought and soil erosion based on the normalized differential water index(NDWI)and revised universal soil loss equation(RUSLE)model
14
作者 Muhammad RENDANA Wan Mohd Razi IDRIS +3 位作者 Febrinasti ALIA Supli Effendi RAHIM Muhammad YAMIN Muhammad IZZUDIN 《Regional Sustainability》 2024年第4期133-144,共12页
The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Further... The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Furthermore,climate change frequently exposes this basin to drought,which negatively affects soil and water conservation.However,recent studies have rarely shown how soil reacts to drought,such as soil erosion.Therefore,the purpose of this study is to evaluate the relationship between drought and soil erosion in the Langat River Basin.We analyzed drought indices using Landsat 8 satellite images in November 2021,and created the normalized differential water index(NDWI)via Landsat 8 data to produce a drought map.We used the revised universal soil loss equation(RUSLE)model to predict soil erosion.We verified an association between the NDWI and soil erosion data using a correlation analysis.The results revealed that the southern and northern regions of the study area experienced drought events.We predicted an average annual soil erosion of approximately 58.11 t/(hm^(2)·a).Analysis of the association between the NDWI and soil erosion revealed a strong positive correlation,with a Pearson correlation coefficient of 0.86.We assumed that the slope length and steepness factor was the primary contributor to soil erosion in the study area.As a result,these findings can help authorities plan effective measures to reduce the impacts of drought and soil erosion in the future. 展开更多
关键词 Drought Soil erosion Normalized differential water index(NDWI) Revised universal soil loss equation(RUSLE) Langat River Basin
下载PDF
黄土高原径流侵蚀功率输沙模型的改进
15
作者 于坤霞 李天毅 +4 位作者 贾路 李占斌 李鹏 丛佩娟 李斌斌 《农业工程学报》 EI CAS CSCD 北大核心 2024年第10期107-116,共10页
水土流失对流域生态危害严重,输沙量模拟和预测可以为流域水土流失防治提供依据,因此精确的输沙模型是流域水土流失治理的重要工具。为了精确模拟变化环境下黄土高原年输沙量,该研究基于黄土高原19个水文站的径流和输沙数据,通过随机森... 水土流失对流域生态危害严重,输沙量模拟和预测可以为流域水土流失防治提供依据,因此精确的输沙模型是流域水土流失治理的重要工具。为了精确模拟变化环境下黄土高原年输沙量,该研究基于黄土高原19个水文站的径流和输沙数据,通过随机森林变量重要性度量方法评估年径流侵蚀功率、淤地坝指数、淤地坝相对指数、归一化植被指数、不透水地面积等因子对流域年输沙量的影响,使用非线性最小二乘法估算年输沙模型参数,对比分析不同因子组合的年输沙模型精度,提出适用性较强的黄土高原年输沙模型,据此开展年输沙量变化贡献率分析。结果表明:1)以幂函数形式构建的仅含径流侵蚀功率单因子输沙模型精度与流域面积有显著的负相关关系,相关系数为-0.505(P<0.05),模型精度随着流域面积增大而下降,在面积大于7000 km^(2)的流域适用性较差;2)年径流侵蚀功率、淤地坝指数及不透水地面积因子组合建立的多因子年输沙模型在黄土高原适用性最佳,模型在率定期纳什效率系数平均值为0.84,均方根误差平均值为0.21亿t,在验证期纳什系数平均值为0.79,均方根误差平均值为0.27亿t。3)影响研究流域年输沙量变化的因素依次是:年径流侵蚀功率、不透水地面积和淤地坝指数。研究可以为黄土高原不同区域水土流失防治和生态治理工作提供理论支撑。 展开更多
关键词 侵蚀 径流 年输沙量 径流侵蚀功率 淤地坝指数 不透水地面积 贡献率
下载PDF
陕北煤矿区采动地裂缝对土壤抗蚀性的影响规律研究
16
作者 宋世杰 彭芮思 +2 位作者 左靖 刘露 陈宝灯 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第2期378-393,共16页
采动地裂缝作为黄河流域中游陕北煤矿区最突出且典型的采动损害问题,引发的水土流失效应已经不容忽视。为了研究采动地裂缝发育对周边土壤抗蚀性的影响,以陕北煤矿区内宽度分别为0~10,10~20,20~30 cm的采动地裂缝为研究对象,采集周边水... 采动地裂缝作为黄河流域中游陕北煤矿区最突出且典型的采动损害问题,引发的水土流失效应已经不容忽视。为了研究采动地裂缝发育对周边土壤抗蚀性的影响,以陕北煤矿区内宽度分别为0~10,10~20,20~30 cm的采动地裂缝为研究对象,采集周边水平距离80 cm以内,垂直深度40 cm以浅的土壤,测定了土壤水稳性团聚体、微团聚体、无机黏粒、有机黏粒、物理性质类等14个国内外学者普遍关注的用于量化表征土壤抗蚀性的指标,采用层次分析法、敏感性分析和因子分析相结合的方法甄选出陕北采动地裂缝发育区土壤抗蚀性的重要量化指标,构建了陕北采动地裂缝发育区土壤抗蚀性综合指数模型。结果表明:①综合层次分析法、敏感性分析和因子分析,甄选确定>0.25 mm水稳性团聚体含量、平均重量直径、<0.001 mm细黏粒含量、土壤团聚度、土壤有机质含量5个指标作为量化表征陕北采动地裂缝发育区土壤抗蚀性的重要指标;②采动地裂缝会降低周围土壤的5个土壤抗蚀性重要指标,其中>0.25 mm水稳性团聚体含量变化最为明显;③根据土壤抗蚀性重要指标,基于因子分析原理构建了陕北采动地裂缝发育区土壤抗蚀性综合指数模型;④采动地裂缝会降低周围土壤的抗侵蚀综合能力,且该效应随着裂缝宽度的增大和水平距离的减小而增强,当距采动地裂缝的水平距离超过170 cm时,采动地裂缝对周围土壤抗侵蚀综合能力的负效应基本消失,其可作为陕北采动地裂缝发育区土壤侵蚀防控的关键区域。研究结果可为黄河中游陕北矿区水土流失的精准防控提供科学依据。 展开更多
关键词 采动地裂缝 土壤抗蚀性 水土流失 综合指数模型 陕北煤矿区
下载PDF
重庆四面山不同林分土壤抗蚀抗冲特征
17
作者 程金花 沈子雅 《中国水土保持科学》 CSCD 北大核心 2024年第1期52-62,共11页
为探讨重庆四面山地区不同林分土壤抗蚀抗冲特征,采用水浸试验和冲刷试验,计算土壤抗蚀指数与抗冲系数,对四面山4种林分类型(针叶林、阔叶林、针阔混交林和楠竹林),共9个不同植物组成的林地土壤抗蚀抗冲特征进行研究。结果表明:1)阔叶... 为探讨重庆四面山地区不同林分土壤抗蚀抗冲特征,采用水浸试验和冲刷试验,计算土壤抗蚀指数与抗冲系数,对四面山4种林分类型(针叶林、阔叶林、针阔混交林和楠竹林),共9个不同植物组成的林地土壤抗蚀抗冲特征进行研究。结果表明:1)阔叶林的抗蚀指数最大,楠竹林抗蚀指数最小,随着土壤深度的增加,土壤抗蚀性能减弱,天然针阔混交林土壤抗蚀指数上下层差异最大(1.92倍)。2)二次多项式函数能高度拟合不同林分土壤抗蚀指数与水浸时间的关系(R2>0.95),随着水浸时间的增加,不同林分土壤抗蚀性能下降。3)土层越深,土壤抗冲系数越大,抗冲性能越强,坡面上层土壤抗冲系数为下层的1.05~5.79倍。阔叶林的抗冲性优于其他林分。4)≤1和>1~3 mm根径的根系总根长与根长密度与土壤抗蚀指数显著正相关(P<0.05),与土壤抗冲性呈显著负相关(P<0.05)。土壤抗蚀性和抗冲系数与总根质量、根质量密度呈显著负相关(P<0.05)。研究结果可为重庆四面山水土保持措施布设、选择合理的植被恢复模式及配置方式提供理论依据。 展开更多
关键词 抗蚀指数 抗冲系数 林分类型 重庆四面山
下载PDF
基于径流侵蚀功率的长江典型流域能沙关系模型及改进 被引量:2
18
作者 贾路 李占斌 +4 位作者 于坤霞 李鹏 徐国策 丛佩娟 李斌斌 《农业工程学报》 EI CAS CSCD 北大核心 2024年第5期128-140,共13页
基于径流侵蚀功率概念建立流域能沙关系模型,可为长江流域泥沙变化精准模拟与水土保持规划提供技术支撑。该研究以长江典型流域及其典型小流域为研究对象,通过收集1965—2018年金沙江流域、嘉陵江流域和湘江流域3个典型流域逐日水沙数... 基于径流侵蚀功率概念建立流域能沙关系模型,可为长江流域泥沙变化精准模拟与水土保持规划提供技术支撑。该研究以长江典型流域及其典型小流域为研究对象,通过收集1965—2018年金沙江流域、嘉陵江流域和湘江流域3个典型流域逐日水沙数据以及万安和李子口2个典型小流域2014—2020年场次降水径流泥沙数据,采用径流侵蚀功率、径流量和降雨侵蚀力对比分析不同时空尺度水沙(径流量和输沙量)、雨沙(降雨侵蚀力和输沙量)和能沙(径流侵蚀功率和输沙量)关系的优劣性,解析能沙关系优越性,并识别能沙关系非一致性变化,从而改进能沙关系模型提高流域输沙量模拟精度。结果表明:1)长江流域3个典型流域及2个典型小流域,在绝大部分情况下能沙关系的表现总是优于水沙关系和雨沙关系,在场次、月和年尺度修正的决定系数最大值分别可达到0.94、0.87和0.54。2)对于不同时间尺度,其流量序列中任意2个流量乘积与输沙量的相关性较高时,第一个流量Q_(1)分位点总是接近1且第二个流量Q_(2)分位点在0.5附近或者高于0.5。基于径流侵蚀功率可以较为准确地计算不同时空尺度流域输沙量,具有明显适用性。3)随着时间升尺度,水沙、雨沙和能沙关系逐渐变差,3个典型流域径流侵蚀功率和输沙量在一些月份上均存在显著变化趋势和显著突变点(P<0.05)。特别是在年尺度上,输沙量均为显著减少趋势(P<0.05),其能沙关系均表现出非一致性变化。4)水库建设和植被增加是导致流域能沙关系变差的重要原因,其均与输沙量呈现极显著负相关(P<0.001)。通过考虑水库指数和NDVI改进能沙关系模型的年决定系数(R^(2))可提高27.28%~97.62%。研究成果可支撑开发新的流域泥沙预报模型,服务长江流域生态保护与高质量发展。 展开更多
关键词 土壤 侵蚀 降雨 径流侵蚀功率 能沙关系 长江流域 非一致性 水库指数
下载PDF
典型水蚀区坡耕地黑土质量的空间分异特征及影响因素 被引量:1
19
作者 李林源 高磊 +3 位作者 彭新华 钱芮 王建茜 杜豪 《水土保持学报》 CSCD 北大核心 2024年第3期382-390,399,共10页
[目的]为明确侵蚀—沉积在黑土坡耕地土壤质量空间分异格局中的塑造作用。[方法]以东北典型水蚀区坡耕地为研究对象,利用110个样点的土壤属性,采用基于最小数据集的土壤质量指数(SQI)指标,评价坡面尺度土壤质量的空间分异特征,并利用广... [目的]为明确侵蚀—沉积在黑土坡耕地土壤质量空间分异格局中的塑造作用。[方法]以东北典型水蚀区坡耕地为研究对象,利用110个样点的土壤属性,采用基于最小数据集的土壤质量指数(SQI)指标,评价坡面尺度土壤质量的空间分异特征,并利用广义线性模型(GLM)明确坡度、坡位、土层深度等因子对土壤质量的贡献。[结果](1)坡耕地土壤养分含量和空间特征在耕作层和亚表层间呈相反规律。对于大部分养分指标,耕作层的含量显著高于亚表层,但是,其空间异质性及土壤养分含量间的相关性低于亚表层(p<0.05);(2)侵蚀沉积作用影响坡耕地土壤质量的空间分布特征。SQI在强烈侵蚀的坡中显著低于轻度侵蚀的坡上和沉积区的坡下(p<0.05),与坡上相比,坡中SQI在耕作层和亚表层分别降低26.2%和31.6%,沉积作用并不一定提高强烈侵蚀坡耕地沉积区的土壤质量,坡下和坡上耕作层的土壤质量无显著差异(p>0.05);(3)土层深度、坡位和坡度是坡耕地SQI变异的主要影响因素。GLM结果显示,对于同一个土壤层次,坡度、坡位及其交互作用对SQI变异的解释度达95%,其中,坡位和坡度的解释度分别为68%和22%;考虑土壤深度因素,在0—40 cm土层,土层深度、坡位和坡度对SQI变异的解释度分别为39%,31%和10%。[结论]采用SQI和GLM相结合的方法,明确侵蚀—沉积过程在坡耕地黑土质量空间分异中的塑造作用,研究成果可为典型水蚀区侵蚀退化黑土地质量评价和管理提供技术支撑。 展开更多
关键词 土壤侵蚀 沉积作用 地形因子 土壤质量指数 广义线性模型
下载PDF
无定河流域不同水土流失区底栖动物生物完整性指数构建与健康评价 被引量:1
20
作者 侯湘然 潘保柱 +3 位作者 侯易明 胡恩 贺瑶 冯治远 《湖泊科学》 EI CAS CSCD 北大核心 2024年第1期274-285,I0026-I0037,共24页
无定河流域位于黄土高原与毛乌素沙地过渡带,水土流失严重,生态环境具有脆弱性和波动性。于2021年春季(4月)和秋季(10月)对无定河流域上、中、下游及其6条支流和流域内的3个淤地坝开展水生态系统调查,旨在厘清无定河流域底栖动物群落特... 无定河流域位于黄土高原与毛乌素沙地过渡带,水土流失严重,生态环境具有脆弱性和波动性。于2021年春季(4月)和秋季(10月)对无定河流域上、中、下游及其6条支流和流域内的3个淤地坝开展水生态系统调查,旨在厘清无定河流域底栖动物群落特征,构建底栖动物生物完整性指数并开展健康评价。无定河流域春季共采集到底栖动物105种,平均密度为181 ind./m^(2),平均生物量为0.760 g/m^(2),秋季共采集到底栖动物67种,平均密度为94 ind./m^(2),平均生物量为0.454 g/m^(2)。通过对两季度研究区域内底栖动物27个生物参数开展分布范围检验、判别能力分析和相关性分析,构建无定河流域底栖动物生物完整性指数,对全流域40个样点(6个参照点和34个受损点)进行B-IBI健康评价。评价结果表明,总体上无定河流域底栖动物生物完整性较好,40个样点中春季有19个处于健康或亚健康状态,秋季有23个处于健康或亚健康状态,其中无定河上、中游干支流大都以健康和亚健康为主,无定河下游干支流以及3个淤地坝水体健康状况较差。在不同水土流失类型区域,底栖动物群落特征和生物完整性评价具有显著性差异。本研究结果可为无定河流域河流健康评估提供科学依据。 展开更多
关键词 无定河流域 水土流失 底栖动物完整性指数 大型底栖无脊椎动物 健康评价
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部