期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum 被引量:1
1
作者 汤城骞 林珂 +1 位作者 周晓国 刘世林 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第1期129-134,I0002,共7页
The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretchin... The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and (^-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water. 展开更多
关键词 raman ratio spectrum. Amide A band. In situ Protein WATER
下载PDF
Accurate assignment of double resonant Raman bands in Janus MoSSe monolayer from first-principles calculations
2
作者 Yujia Pang Jianqi Huang +1 位作者 Teng Yang Zhidong Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第36期82-90,共9页
Janus transition metal dichalcogenides(TMDs)structures,as a new type of two-dimensional layered materials,have drawn increasing research efforts mostly by the Raman characterization technique since their successful sy... Janus transition metal dichalcogenides(TMDs)structures,as a new type of two-dimensional layered materials,have drawn increasing research efforts mostly by the Raman characterization technique since their successful synthesis.First-and second-order resonant Raman spectra(RRS)have been reported by experiments.But,unlike much interest paid to the first-order RRS,there has been so far no much discussion dedicated to the second-order double resonant Raman(DRR)bands and band assignments of Janus TMDs,which nevertheless is indispensable but hampered by the difficulty of calculations.In this work,we calculate the DRR spectra of Janus Mo SSe monolayer within the first-principles framework and succeed in achieving accurate assignments of the DRR bands.The assignments are in agreement with our group theoretical analysis.Moreover,taking advantage of its strain-sensitive feature,we calculate the DRR spectra under biaxial strain,and further verify the rationality of our assignments by analyzing strain-induced shift of the DRR bands.Our present study supplies an efficient strategy for quantitative understanding on the electron-phonon coupling in the Janus structures. 展开更多
关键词 First-principles calculation Double resonant raman raman band assignments Janus MoSSe monolayer
原文传递
BOND STRUCTURE OF HYDROGENATED DIAMOND LIKE CARBON FILMS DEPOSITED BY PLASMA BASED ION IMPLANTATION
3
作者 G.Li,L.F.Xia ,X.X.Ma,Y.Sun and Z.J.Zhan Schoolof Materials Science and Engineering, Harbin Institute of Technology , Harbin 150001 ,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第4期551-556,共6页
The bondstructureofhydrogenated diamond likecarbon( DLC) filmsdeposited with plasmabased ionimplantation ( PBII) wascharacterized by Raman spectroscopy andcore level band and valenceband spectrum of XPS. Theresults... The bondstructureofhydrogenated diamond likecarbon( DLC) filmsdeposited with plasmabased ionimplantation ( PBII) wascharacterized by Raman spectroscopy andcore level band and valenceband spectrum of XPS. Theresultsshow thatthe hydrogenated carbon filmspre pared with lower pulse bias, especially zero bias, display polymer like feature. The DLCfilms deposited with 15 kVpulsebiascontainsthehighestdensityofsp3 bonds. Thecore lev elband ( C1s) spectra of allfilmsshifttowardlow bindingenergy after4kVAr+ ion bom barding. The valenceband spectra of hydrogenated DLCfilmsarequite differentfrom thatof diamond and graphite. However, afterion bombarding, besidetwosingle peaksatabout17 0 eVand 12 5 eV(similarto graphite) ,two new sharp peaksappearatabout21 3 eVand 8 0 eV,respectively. Thepeak at8 0 eVcan beconsidertothecontribution duetothe actingofimplanted argon on C Cbondsand C Hbondsin thefilms. 展开更多
关键词 hydrogenated DLCfilms core level band valence band raman spec troscopy PBII
下载PDF
Spectral characteristics of banded iron formations in Singhbhum craton,eastern India:Implications for hematite deposits on Mars
4
作者 Mahima Singh Jayant Singhal +3 位作者 K.Arun Prasad V.J.Rajesh Dwijesh Ray Priyadarshi Sahoo 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第6期927-936,共10页
Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environm... Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada) and Carajas (Brazil) have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray) in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (〈4 mm) are occasionally observed in the handspecimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1,9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VlS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has altered the primary iron oxide phases into the secondary iron oxide phases. The optimum bands identified for the minerals using various spectroscopic techniques can be used as reference for similar mineral deposits on any remote area on Earth or on other hydrated planetary surfaces like Mars. 展开更多
关键词 Banded iron formation Singhbhum craton VIS/NIR spectroscopy raman spectroscopy Terrestrial analog Mars
下载PDF
Characterization of Full-WDM-Band Photodiode Modules Using Raman Amplifiers in the U Band at 40 Gb/s
5
作者 Morio Wada Toshimasa Umezawa +5 位作者 Takahiro Kudou Takashi Mogi Shinji Iio Shinji Kobayashi Tsuyoshi Yakihara Akira Miura 《光学学报》 EI CAS CSCD 北大核心 2003年第S1期447-448,共2页
We present the characteristics of a full-WDM-band photodiode module in 40 Gb/s U-band operation using a Raman amplifier. This module is suitable for wide-band transmission systems with the additional new channels in t... We present the characteristics of a full-WDM-band photodiode module in 40 Gb/s U-band operation using a Raman amplifier. This module is suitable for wide-band transmission systems with the additional new channels in the U band. 展开更多
关键词 WDM for with Characterization of Full-WDM-Band Photodiode Modules Using raman Amplifiers in the U Band at 40 Gb/s of in
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部