The physical and mechanical properties of unstabilized rammed earth with different clay contents were studied, which could provide a theoretical basis for the understanding of mechanical properties of unstabilized ram...The physical and mechanical properties of unstabilized rammed earth with different clay contents were studied, which could provide a theoretical basis for the understanding of mechanical properties of unstabilized rammed earth and improve the construction design method and specification of RE buildings for sustainable development. The experimental results show that clay content has significant influences on the engineering properties of unstabilized rammed earth. For the fine-grained soil, the liquid limit, plastic limit and plasticity index increase gradually with the increase of the clay content. The influence of clay content on the optimum moisture content compared with the maximum dry density is more significant. The mechanical properties of unstabilized rammed earth are significantly affected by the clay content. There exist good linear relationships, which can be used for the mutual verification or calculation among the mechanical properties. An empirical model of unconfined compression strength with the FA/CA ratio as the main parameter is established, and the UCS may obtain the maximum with a FA/CA ratio of 5.77.展开更多
基金Funded by the National Key Technologies R&D Program of China(2015BAL03B03)
文摘The physical and mechanical properties of unstabilized rammed earth with different clay contents were studied, which could provide a theoretical basis for the understanding of mechanical properties of unstabilized rammed earth and improve the construction design method and specification of RE buildings for sustainable development. The experimental results show that clay content has significant influences on the engineering properties of unstabilized rammed earth. For the fine-grained soil, the liquid limit, plastic limit and plasticity index increase gradually with the increase of the clay content. The influence of clay content on the optimum moisture content compared with the maximum dry density is more significant. The mechanical properties of unstabilized rammed earth are significantly affected by the clay content. There exist good linear relationships, which can be used for the mutual verification or calculation among the mechanical properties. An empirical model of unconfined compression strength with the FA/CA ratio as the main parameter is established, and the UCS may obtain the maximum with a FA/CA ratio of 5.77.