Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events...Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events have been reported.In this paper,the statistical scenarios forecasting method is proposed for wind power ramp event probabilistic forecasting based on the probability generating model.Multi-objective fitness functions are established considering cumulative density functions and higher order moment autocorrelation functions with respect to the consistency of distribution and timing characteristics,respectively.Parameters of probability generating model are calculated by the iterative optimization using the modified genetic algorithm with multi-objective fitness functions.A number of statistical scenarios captured bands are generated accordingly.Eventually,ramp event probability characteristics are detected from scenarios captured bands to evaluate the ramp event forecasting method.A wind plant of Bonneville Power Administration with actual wind power data is selected for calculation and statistical analysis.It is shown that statistical results with multi-objective functions are more accurate than the results with single objective functions.Moreover,the statistical scenarios forecasting method can accurately estimate the characteristics of wind power ramp events.The results verify that the proposed method can guide the generation method of statistical scenarios and forecasting models for ramp events.展开更多
Although wind power ramp events(WPREs)are relatively scarce,they can inevitably deteriorate the stability of power system operation and bring risks to the trading of electricity market.In this paper,an imprecise condi...Although wind power ramp events(WPREs)are relatively scarce,they can inevitably deteriorate the stability of power system operation and bring risks to the trading of electricity market.In this paper,an imprecise conditional probability estimation method for WPREs is proposed based on the Bayesian network(BN)theory.The method uses the maximum weight spanning tree(MWST)and greedy search(GS)to build a BN that has the highest fitting degree with the observed data.Meanwhile,an extended imprecise Dirichlet model(IDM)is developed to estimate the parameters of the BN,which quantificationally reflect the ambiguous dependencies among the random ramp event and various meteorological variables.The BN is then applied to predict the interval probability of each possible ramp state under the given meteorological conditions,which is expected to cover the target probability at a specified confidence level.The proposed method can quantify the uncertainty of the probabilistic ramp event estimation.Meanwhile,by using the extracted dependencies and Bayesian rules,the method can simplify the conditional probability estimation and perform reliable prediction even with scarce samples.Test results on a real wind farm with three-year operation data illustrate the effectiveness of the proposed method.展开更多
随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压...随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压力。合理的风电爬坡事件检测以及精准的风电功率预测能为风电场运维及电力系统调度提供先验指导,有力缓解风电不确定性带来的危害。首先讨论了目前主流风电爬坡事件定义的盲点,分类并分析了3种风电爬坡场景的功率变化特性,据此提出基于滑动窗双边累计和(cumulative sum, CUSUM)算法的风电爬坡事件检测方法,提取时序耦合信息,捕捉短时间窗口内风电功率数据的异常波动,提高风电爬坡事件检测精度。其次,采用贝叶斯优化的长短期记忆(long short term memory, LSTM)神经网络,最优化模型超参数,提高模型对于爬坡事件发生时风机出力的预测性能。进一步应用所提风电爬坡事件检测方法,对模型预测区间内的风电爬坡事件进行检测实验,验证了所提方法的有效性。展开更多
At home and broad, more wind power is being installed in electricity markets, the influence brought by wind power become more important on power system stability, especially the fluctuation, the uncertainty in wind po...At home and broad, more wind power is being installed in electricity markets, the influence brought by wind power become more important on power system stability, especially the fluctuation, the uncertainty in wind power production and multi-time scale of the wind. In order to forecast ramp events before the power system encountering failure, so that the operator can adopt some limited controlling strategy. This paper introduces the present status of the wind power ramp prediction at home and abroad. And it gives out four kinds of definitions of ramp events, which are used by many scholars, then provides various forecasting error algorithm. In the aspect of prediction models, it comes up with physical models and statistical models, and enumerates various examples of different models. Finally, it prospects the tendency of the model improvement about the wind power ramp events forecasting, which would be significant for ramp research.展开更多
基金This work was supported by the National Basic Research Program of China(No.2012CB215101).
文摘Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events have been reported.In this paper,the statistical scenarios forecasting method is proposed for wind power ramp event probabilistic forecasting based on the probability generating model.Multi-objective fitness functions are established considering cumulative density functions and higher order moment autocorrelation functions with respect to the consistency of distribution and timing characteristics,respectively.Parameters of probability generating model are calculated by the iterative optimization using the modified genetic algorithm with multi-objective fitness functions.A number of statistical scenarios captured bands are generated accordingly.Eventually,ramp event probability characteristics are detected from scenarios captured bands to evaluate the ramp event forecasting method.A wind plant of Bonneville Power Administration with actual wind power data is selected for calculation and statistical analysis.It is shown that statistical results with multi-objective functions are more accurate than the results with single objective functions.Moreover,the statistical scenarios forecasting method can accurately estimate the characteristics of wind power ramp events.The results verify that the proposed method can guide the generation method of statistical scenarios and forecasting models for ramp events.
基金supported by the National Key R&D Program of China“Technology and Application of Wind Power/Photovoltaic Power Prediction for Promoting Renewable Energy Consumption”(No.2018YFB0904200)。
文摘Although wind power ramp events(WPREs)are relatively scarce,they can inevitably deteriorate the stability of power system operation and bring risks to the trading of electricity market.In this paper,an imprecise conditional probability estimation method for WPREs is proposed based on the Bayesian network(BN)theory.The method uses the maximum weight spanning tree(MWST)and greedy search(GS)to build a BN that has the highest fitting degree with the observed data.Meanwhile,an extended imprecise Dirichlet model(IDM)is developed to estimate the parameters of the BN,which quantificationally reflect the ambiguous dependencies among the random ramp event and various meteorological variables.The BN is then applied to predict the interval probability of each possible ramp state under the given meteorological conditions,which is expected to cover the target probability at a specified confidence level.The proposed method can quantify the uncertainty of the probabilistic ramp event estimation.Meanwhile,by using the extracted dependencies and Bayesian rules,the method can simplify the conditional probability estimation and perform reliable prediction even with scarce samples.Test results on a real wind farm with three-year operation data illustrate the effectiveness of the proposed method.
文摘随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压力。合理的风电爬坡事件检测以及精准的风电功率预测能为风电场运维及电力系统调度提供先验指导,有力缓解风电不确定性带来的危害。首先讨论了目前主流风电爬坡事件定义的盲点,分类并分析了3种风电爬坡场景的功率变化特性,据此提出基于滑动窗双边累计和(cumulative sum, CUSUM)算法的风电爬坡事件检测方法,提取时序耦合信息,捕捉短时间窗口内风电功率数据的异常波动,提高风电爬坡事件检测精度。其次,采用贝叶斯优化的长短期记忆(long short term memory, LSTM)神经网络,最优化模型超参数,提高模型对于爬坡事件发生时风机出力的预测性能。进一步应用所提风电爬坡事件检测方法,对模型预测区间内的风电爬坡事件进行检测实验,验证了所提方法的有效性。
文摘At home and broad, more wind power is being installed in electricity markets, the influence brought by wind power become more important on power system stability, especially the fluctuation, the uncertainty in wind power production and multi-time scale of the wind. In order to forecast ramp events before the power system encountering failure, so that the operator can adopt some limited controlling strategy. This paper introduces the present status of the wind power ramp prediction at home and abroad. And it gives out four kinds of definitions of ramp events, which are used by many scholars, then provides various forecasting error algorithm. In the aspect of prediction models, it comes up with physical models and statistical models, and enumerates various examples of different models. Finally, it prospects the tendency of the model improvement about the wind power ramp events forecasting, which would be significant for ramp research.