In this paper, a novel image encryption scheme based on Keplers third law and random Hadamard transform is proposed to ensure the security of a digital image. First, a set of Kepler periodic sequences is generated to ...In this paper, a novel image encryption scheme based on Keplers third law and random Hadamard transform is proposed to ensure the security of a digital image. First, a set of Kepler periodic sequences is generated to permutate image data, which is characteristic of the plain-image and the Keplers third law. Then, a random Hadamard matrix is constructed by combining the standard Hadamard matrix with the hyper-Chen chaotic system, which is used to further scramble the image coefficients when the image is transformed through random Hadamard transform. In the end, the permuted image presents interweaving diffusion based on two special matrices, which are constructed by Kepler periodic sequence and chaos system. The experimental results and performance analysis show that the proposed encrypted scheme is highly sensitive to the plain-image and external keys, and has a high security and speed, which are very suitable for secure real-time communication of image data.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61661008 and 61603104)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant Nos.2015GXNSFBA139256 and 2016GXNSFCA380017)+3 种基金the Funding of Overseas 100 Talents Program of Guangxi Provincial Higher Education,China,the Research Project of Guangxi University of China(Grant No.KY2016YB059)the Guangxi Key Laboratory of Multi-source Information Mining&Security,China(Grant No.MIMS15-07)the Doctoral Research Foundation of Guangxi Normal University,the Guangxi Provincial Experiment Center of Information Sciencethe Innovation Project of Guangxi Graduate Education(Grant No.YCSZ2017055)
文摘In this paper, a novel image encryption scheme based on Keplers third law and random Hadamard transform is proposed to ensure the security of a digital image. First, a set of Kepler periodic sequences is generated to permutate image data, which is characteristic of the plain-image and the Keplers third law. Then, a random Hadamard matrix is constructed by combining the standard Hadamard matrix with the hyper-Chen chaotic system, which is used to further scramble the image coefficients when the image is transformed through random Hadamard transform. In the end, the permuted image presents interweaving diffusion based on two special matrices, which are constructed by Kepler periodic sequence and chaos system. The experimental results and performance analysis show that the proposed encrypted scheme is highly sensitive to the plain-image and external keys, and has a high security and speed, which are very suitable for secure real-time communication of image data.