In this paper, a direct probabilistic approach(DPA) is presented to formulate and solve moment equations for nonlinear systems excited by environmental loads that can be either a stationary or nonstationary random p...In this paper, a direct probabilistic approach(DPA) is presented to formulate and solve moment equations for nonlinear systems excited by environmental loads that can be either a stationary or nonstationary random process.The proposed method has the advantage of obtaining the response's moments directly from the initial conditions and statistical characteristics of the corresponding external excitations. First, the response's moment equations are directly derived based on a DPA, which is completely independent of the It?/filtering approach since no specific assumptions regarding the correlation structure of excitation are made.By solving them under Gaussian closure, the response's moments can be obtained. Subsequently, a multiscale algorithm for the numerical solution of moment equations is exploited to improve computational efficiency and avoid much wall-clock time. Finally, a comparison of the results with Monte Carlo(MC) simulation gives good agreement.Furthermore, the advantage of the multiscale algorithm in terms of efficiency is also demonstrated by an engineering example.展开更多
In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by ...In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.展开更多
Government credibility is an important asset of contemporary national governance, an important criterion for evaluating government legitimacy, and a key factor in measuring the effectiveness of government governance. ...Government credibility is an important asset of contemporary national governance, an important criterion for evaluating government legitimacy, and a key factor in measuring the effectiveness of government governance. In recent years, researchers’ research on government credibility has mostly focused on exploring theories and mechanisms, with little empirical research on this topic. This article intends to apply variable selection models in the field of social statistics to the issue of government credibility, in order to achieve empirical research on government credibility and explore its core influencing factors from a statistical perspective. Specifically, this article intends to use four regression-analysis-based methods and three random-forest-based methods to study the influencing factors of government credibility in various provinces in China, and compare the performance of these seven variable selection methods in different dimensions. The research results show that there are certain differences in simplicity, accuracy, and variable importance ranking among different variable selection methods, which present different importance in the study of government credibility issues. This study provides a methodological reference for variable selection models in the field of social science research, and also offers a multidimensional comparative perspective for analyzing the influencing factors of government credibility.展开更多
基金supported by the Defense Industrial Technology Development Program (Grant JCKY2013601B)the "111" Project (Grant B07009)the National Natural Science Foundation of China (Grants 11372025, 11432002)
文摘In this paper, a direct probabilistic approach(DPA) is presented to formulate and solve moment equations for nonlinear systems excited by environmental loads that can be either a stationary or nonstationary random process.The proposed method has the advantage of obtaining the response's moments directly from the initial conditions and statistical characteristics of the corresponding external excitations. First, the response's moment equations are directly derived based on a DPA, which is completely independent of the It?/filtering approach since no specific assumptions regarding the correlation structure of excitation are made.By solving them under Gaussian closure, the response's moments can be obtained. Subsequently, a multiscale algorithm for the numerical solution of moment equations is exploited to improve computational efficiency and avoid much wall-clock time. Finally, a comparison of the results with Monte Carlo(MC) simulation gives good agreement.Furthermore, the advantage of the multiscale algorithm in terms of efficiency is also demonstrated by an engineering example.
文摘In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.
文摘Government credibility is an important asset of contemporary national governance, an important criterion for evaluating government legitimacy, and a key factor in measuring the effectiveness of government governance. In recent years, researchers’ research on government credibility has mostly focused on exploring theories and mechanisms, with little empirical research on this topic. This article intends to apply variable selection models in the field of social statistics to the issue of government credibility, in order to achieve empirical research on government credibility and explore its core influencing factors from a statistical perspective. Specifically, this article intends to use four regression-analysis-based methods and three random-forest-based methods to study the influencing factors of government credibility in various provinces in China, and compare the performance of these seven variable selection methods in different dimensions. The research results show that there are certain differences in simplicity, accuracy, and variable importance ranking among different variable selection methods, which present different importance in the study of government credibility issues. This study provides a methodological reference for variable selection models in the field of social science research, and also offers a multidimensional comparative perspective for analyzing the influencing factors of government credibility.