期刊文献+
共找到2,581篇文章
< 1 2 130 >
每页显示 20 50 100
Bayesian and Non-Bayesian Analysis for the Sine Generalized Linear Exponential Model under Progressively Censored Data
1
作者 Naif Alotaibi A.S.Al-Moisheer +2 位作者 Ibrahim Elbatal Mohammed Elgarhy Ehab M.Almetwally 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2795-2823,共29页
This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation ... This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation to enhance its capabilities.The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues.The suggested model incorporates a hazard rate function(HRF)that may display a rising,J-shaped,or bathtub form,depending on its unique characteristics.This model includes many well-known lifespan distributions as separate sub-models.The suggested model is accompanied with a range of statistical features.The model parameters are examined using the techniques of maximum likelihood and Bayesian estimation using progressively censored data.In order to evaluate the effectiveness of these techniques,we provide a set of simulated data for testing purposes.The relevance of the newly presented model is shown via two real-world dataset applications,highlighting its superiority over other respected similar models. 展开更多
关键词 Sine G family generalized linear failure rate progressively censored data MOMENTS maximum likelihood estimation Bayesian estimation simulation
下载PDF
Censored Composite Conditional Quantile Screening for High-Dimensional Survival Data
2
作者 LIU Wei LI Yingqiu 《应用概率统计》 CSCD 北大核心 2024年第5期783-799,共17页
In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all usef... In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated. 展开更多
关键词 high-dimensional survival data censored composite conditional quantile coefficient sure screening property rank consistency property
下载PDF
Composite Quantile Regression for Nonparametric Model with Random Censored Data 被引量:1
3
作者 Rong Jiang Weimin Qian 《Open Journal of Statistics》 2013年第2期65-73,共9页
The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. T... The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the proposed method works well in practical settings. 展开更多
关键词 Kaplan-Meier ESTIMATOR censored data COMPOSITE QUANTILE Regression KERNEL ESTIMATOR NONPARAMETRIC Model
下载PDF
A KERNEL ESTIMATOR OF A DENSITY FUNCTION IN MULTIVARIATE CASE FROM RANDOMLY CENSORED DATA
4
作者 周勇 《Acta Mathematica Scientia》 SCIE CSCD 1996年第2期170-180,共11页
A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error ... A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error of the estimator are studied. 展开更多
关键词 Kernel density estimator asymptotic normality product-limit estimator mean square error and censored data.
下载PDF
A class of estimators of the mean survival time from interval censored data with application to linear regression 被引量:9
5
作者 ZHENG Zu-kang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第4期377-390,共14页
A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense t... A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense that the estimators in a certain class have the same expectation as the mean survival time. The estimators have good properties such as strong consistency (with the rate of O(n^-1/1 (log log n)^1/2)) and asymptotic normality. The application to linear regression is considered and the simulation reports are given. 展开更多
关键词 interval censored data linear regression
下载PDF
KERNEL ESTIMATION OF HIGHER DERIVATIVES OF DENSITY AND HAZARD RATE FUNCTION FOR TRUNCATED AND CENSORED DEPENDENT DATA 被引量:3
6
作者 陈清平 戴永隆 《Acta Mathematica Scientia》 SCIE CSCD 2003年第4期477-486,共10页
Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing d... Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing dependence, local properties including strong consistency and law of iterated logarithm are presented. Moreover, when the mode estimator is defined as the random variable that maximizes the kernel density estimator, the asymptotic normality of the mode estimator is established. 展开更多
关键词 Truncated and censored data Α-MIXING strong consistency law of iterated logarithm MODE
下载PDF
EMPIRICAL LIKELIHOOD-BASED INFERENCE IN LINEAR MODELS WITH INTERVAL CENSORED DATA 被引量:3
7
作者 He Qixiang Zheng Ming 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第3期338-346,共9页
An empirical likelihood approach to estimate the coefficients in linear model with interval censored responses is developed in this paper. By constructing unbiased transformation of interval censored data,an empirical... An empirical likelihood approach to estimate the coefficients in linear model with interval censored responses is developed in this paper. By constructing unbiased transformation of interval censored data,an empirical log-likelihood function with asymptotic X^2 is derived. The confidence regions for the coefficients are constructed. Some simulation results indicate that the method performs better than the normal approximation method in term of coverage accuracies. 展开更多
关键词 interval censored data linear model empirical likelihood unbiased transformation.
下载PDF
Forest type identification by random forest classification combined with SPOT and multitemporal SAR data 被引量:4
8
作者 Ying Yu Mingze Li Yu Fu 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1407-1414,共8页
We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR wer... We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR were used to identify forest types in the Pangu Forest Farm of the Daxing'an Mountains.Forest types were identified using random forest(RF) classification with the following data combination types: SPOT-5 alone,SPOT-5 and SAR images in August or November,and SPOT-5 and two temporal SAR images.We identified many forest types using a combination of multitemporal SAR and SPOT-5 images,including Betula platyphylla,Larix gmelinii,Pinus sylvestris and Picea koraiensis forests.The accuracy of classification exceeded 88% and improved by 12% when compared to the classification results obtained using SPOT data alone.RF classification using a combination of multisource remote sensing data improved classification accuracy compared to that achieved using single-source remote sensing data. 展开更多
关键词 random forest classification MULTITEMPORAL Multisource remote sensing data Polarization decomposition
下载PDF
ESTIMATORS AND SOME BEHAVIORS FORA PARTIALLY LINEAR MODEL WITH CENSORED DATA 被引量:2
9
作者 陈平 《Acta Mathematica Scientia》 SCIE CSCD 1999年第3期321-331,共11页
This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author als... This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet. 展开更多
关键词 partial linear model censored data local linear smoothing cross-validation kernel estimator
下载PDF
Maximum Likelihood Estimation of the Parameters of Exponentiated Generalized Weibull Based on Progressive Type II Censored Data 被引量:4
10
作者 Ibrahim Sawadogo Leo Odongo Ibrahim Ly 《Open Journal of Statistics》 2017年第6期956-963,共8页
Exponentiated Generalized Weibull distribution is a probability distribution which generalizes the Weibull distribution introducing two more shapes parameters to best adjust the non-monotonic shape. The parameters of ... Exponentiated Generalized Weibull distribution is a probability distribution which generalizes the Weibull distribution introducing two more shapes parameters to best adjust the non-monotonic shape. The parameters of the new probability distribution function are estimated by the maximum likelihood method under progressive type II censored data via expectation maximization algorithm. 展开更多
关键词 MAXIMUM LIKELIHOOD Type II censored data Exponentiated GENERALIZED Weibull EM-ALGORITHM
下载PDF
ESTIMATION FOR THE AYMPTOTIC VARIANCE OF PARAMETRIC ESTIMATES IN PARTIAL LINEAR MODEL WITH CENSORED DATA 被引量:2
11
作者 秦更生 蔡雷 《Acta Mathematica Scientia》 SCIE CSCD 1996年第2期192-208,共17页
Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobse... Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn). 展开更多
关键词 Partial linear model censored data Kernel method Asymptotic normality Thc law of the iterated logarithm.
下载PDF
Data cleaning method for the process of acid production with flue gas based on improved random forest 被引量:3
12
作者 Xiaoli Li Minghua Liu +2 位作者 Kang Wang Zhiqiang Liu Guihai Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期72-84,共13页
Acid production with flue gas is a complex nonlinear process with multiple variables and strong coupling.The operation data is an important basis for state monitoring,optimal control,and fault diagnosis.However,the op... Acid production with flue gas is a complex nonlinear process with multiple variables and strong coupling.The operation data is an important basis for state monitoring,optimal control,and fault diagnosis.However,the operating environment of acid production with flue gas is complex and there is much equipment.The data obtained by the detection equipment is seriously polluted and prone to abnormal phenomena such as data loss and outliers.Therefore,to solve the problem of abnormal data in the process of acid production with flue gas,a data cleaning method based on improved random forest is proposed.Firstly,an outlier data recognition model based on isolation forest is designed to identify and eliminate the outliers in the dataset.Secondly,an improved random forest regression model is established.Genetic algorithm is used to optimize the hyperparameters of the random forest regression model.Then the optimal parameter combination is found in the search space and the trend of data is predicted.Finally,the improved random forest data cleaning method is used to compensate for the missing data after eliminating abnormal data and the data cleaning is realized.Results show that the proposed method can accurately eliminate and compensate for the abnormal data in the process of acid production with flue gas.The method improves the accuracy of compensation for missing data.With the data after cleaning,a more accurate model can be established,which is significant to the subsequent temperature control.The conversion rate of SO_(2) can be further improved,thereby improving the yield of sulfuric acid and economic benefits. 展开更多
关键词 Acid production data cleaning Isolation forest random forest data compensation
下载PDF
TESTING FOR VARYING DISPERSION OF LONGITUDINAL BINOMIAL DATA IN NONLINEAR LOGISTIC MODELS WITH RANDOM EFFECTS 被引量:2
13
作者 林金官 韦博成 《Acta Mathematica Scientia》 SCIE CSCD 2004年第4期559-568,共10页
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. O... In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)). 展开更多
关键词 Longitudinal binomial data logistic regression nonlinear models power calculation random effects score test varying dispersion
下载PDF
Inversion-based data-driven time-space domain random noise attenuation method 被引量:3
14
作者 Zhao Yu-Min Li Guo-Fa +3 位作者 Wang Wei Zhou Zhen-Xiao Tang Bo-Wen Zhang Wen-Bo 《Applied Geophysics》 SCIE CSCD 2017年第4期543-550,621,622,共10页
Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, whe... Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, when estimating random noise, it is assumed that random noise can be predicted from the seismic data by convolving with a prediction error filter. That is, the source-noise model. Model inconsistencies, before and after denoising, compromise the noise attenuation and signal-preservation performances of prediction filtering methods. Therefore, this study presents an inversion-based time-space domain random noise attenuation method to overcome the model inconsistencies. In this method, a prediction error filter (PEF), is first estimated from seismic data; the filter characterizes the predictability of the seismic data and adaptively describes the seismic data's space structure. After calculating PEF, it can be applied as a regularized constraint in the inversion process for seismic signal from noisy data. Unlike conventional random noise attenuation methods, the proposed method solves a seismic data inversion problem using regularization constraint; this overcomes the model inconsistency of the prediction filtering method. The proposed method was tested on both synthetic and real seismic data, and results from the prediction filtering method and the proposed method are compared. The testing demonstrated that the proposed method suppresses noise effectively and provides better signal-preservation performance. 展开更多
关键词 random noise attenuation prediction filtering seismic data inversion regularization constraint
下载PDF
THE INFLUENCE OF THE DIFFERENT DISTRIBUTEDPHASE-RANDOMIZED ON THE EXPERIMENTAL DATA OBTAINEd IN DYNAMIC ANALYSIS 被引量:1
15
作者 马军海 陈予恕 刘曾荣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第11期0-0,0-0+0-0+0-0+0-0,共10页
In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized... In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized of the different distributed random numbers are less influential on the critical value . This offers the theoretical foundation of the feasibility and practicality of the phase-randomized method. 展开更多
关键词 experimental data surrogate data critical value phaserandomized random timeseries chaotic timeseries
下载PDF
Bayesian Study Using MCMC of Three-Parameter Frechet Distribution Based on Type-I Censored Data 被引量:2
16
作者 Al Omari Mohammed Ahmed 《Journal of Applied Mathematics and Physics》 2021年第2期220-232,共13页
Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of ... Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of data. The purpose of the research was to estimate the three parameters of the Frechet distribution via the frequentist Maximum Likelihood and the Bayesian Estimators. In this paper, the maximum likelihood method (MLE) is not available of the three parameters in the closed forms;therefore, it was solved by the numerical methods. Similarly, the Bayesian estimators are implemented using Jeffreys and gamma priors with two loss functions, which are: squared error loss function and Linear Exponential Loss Function (LINEX). The parameters of the Frechet distribution via Bayesian cannot be obtained analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the three parameters is obtained via Metropolis-Hastings algorithm. Comparisons of the estimators are obtained using Mean Square Errors (MSE) to determine the best estimator of the three parameters of the Frechet distribution. The results show that the Bayesian estimation under Linear Exponential Loss Function based on Type-I censored data is a better estimator for all the parameter estimates when the value of the loss parameter is positive. 展开更多
关键词 Frechet Distribution Bayesian Method Type-I censored data Markov Chain Monte Carlo Metropolis-Hastings Algorithm
下载PDF
Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data 被引量:2
17
作者 WANG Fengfei TANG Shengjin +3 位作者 SUN Xiaoyan LI Liang YU Chuanqiang SI Xiaosheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期247-258,共12页
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n... Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction. 展开更多
关键词 remaining useful life(RUL)prediction imperfect prior information failure time data NONLINEAR random coefficient regression(RCR)model
下载PDF
Mechanical Fault Diagnosis Based on Band-phase-randomized Surrogate Data and Multifractal 被引量:3
18
作者 ZHANG Shuqing ZHAO Yuchun ZHANG Liguo JIN Mei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期885-890,共6页
The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single frac... The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single fractal form,which only reflects the overall irregularity of signals,but cannot describe its local scaling properties.For comprehensive revealing of internal properties,a combinatorial method based on band-phase-randomized(BPR) surrogate data and multifractal is introduced.BPR surrogate data method is effective to eliminate nonlinearity in specified frequency band for a fault signal,which can be utilized to detect nonlinear degree in whole fault signal by nonlinear titration method,and the overall nonlinear distribution of fault signal is displayed in nonlinear characteristic curve that can be used to analyze the fault signal qualitatively.Then multifractal theory as a quantitative analysis method is used to describe geometrical characteristics and local scaling properties,and asymmetry coefficient of multifractal spectrum and multifractal entropy for fault signals are extracted as new criterions to diagnose machinery faults.Several typical faults include rotor misalignment,transversal crack,and static-dynamic rubbing fault are analyzed,and the results indicate that those faults can be distinguished by the proposed method effectively,which provides a qualitative and quantitative analysis way in the field of machinery fault diagnosis. 展开更多
关键词 fault diagnosis band-phase-randomized surrogate data nonlinear titration MULTIFRACTAL
下载PDF
Random Forests Algorithm Based Duplicate Detection in On-Site Programming Big Data Environment 被引量:1
19
作者 Qianqian Li Meng Li +1 位作者 Lei Guo Zhen Zhang 《Journal of Information Hiding and Privacy Protection》 2020年第4期199-205,共7页
On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is e... On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is essential for on-site programming big data.Duplicate data detection is an important step in data cleaning,which can save storage resources and enhance data consistency.Due to the insufficiency in traditional Sorted Neighborhood Method(SNM)and the difficulty of high-dimensional data detection,an optimized algorithm based on random forests with the dynamic and adaptive window size is proposed.The efficiency of the algorithm can be elevated by improving the method of the key-selection,reducing dimension of data set and using an adaptive variable size sliding window.Experimental results show that the improved SNM algorithm exhibits better performance and achieve higher accuracy. 展开更多
关键词 On-site programming big data duplicate record detection random forests adaptive sliding window
下载PDF
STRONG REPRESENTATIONS OF THE SURVIVAL FUNCTION ESTIMATOR ON INCREASING SETS FOR TRUNCATED AND CENSORED DATA
20
作者 孙六全 郑忠国 《Acta Mathematica Scientia》 SCIE CSCD 1999年第3期251-260,共10页
In this paper, based on random left truncated and right censored data, the authors derive strong representations of the cumulative hazard function estimator and the product-limit estimator of the survival function. wh... In this paper, based on random left truncated and right censored data, the authors derive strong representations of the cumulative hazard function estimator and the product-limit estimator of the survival function. which are valid up to a given order statistic of the observations. A precise bound for the errors is obtained which only depends on the index of the last order statistic to be included. 展开更多
关键词 truncated and censored data cumulative hazard function product-limit estimator strong representations
下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部