期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Approximate Linear Solver in Least Square Support Vector Machine Using Randomized Singular Value Decomposition
1
作者 LIU Bing XIANG Hua 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第4期283-290,共8页
In this paper, we investigate the linear solver in least square support vector machine(LSSVM) for large-scale data regression. The traditional methods using the direct solvers are costly. We know that the linear equ... In this paper, we investigate the linear solver in least square support vector machine(LSSVM) for large-scale data regression. The traditional methods using the direct solvers are costly. We know that the linear equations should be solved repeatedly for choosing appropriate parameters in LSSVM, so the key for speeding up LSSVM is to improve the method of solving the linear equations. We approximate large-scale kernel matrices and get the approximate solution of linear equations by using randomized singular value decomposition(randomized SVD). Some data sets coming from University of California Irvine machine learning repository are used to perform the experiments. We find LSSVM based on randomized SVD is more accurate and less time-consuming in the case of large number of variables than the method based on Nystrom method or Lanczos process. 展开更多
关键词 least square support vector machine Nystr?m method Lanczos process randomized singular value decomposition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部