协方差分析描述函数法(covariance analysis describing function technique,CADET)在处理系统的随机响应问题上具有求解迅速、仿真精度高等优点.但对于复杂系统,其理论推导过程、求解系统解析响应方程较为复杂繁琐.为进一步推广CADET...协方差分析描述函数法(covariance analysis describing function technique,CADET)在处理系统的随机响应问题上具有求解迅速、仿真精度高等优点.但对于复杂系统,其理论推导过程、求解系统解析响应方程较为复杂繁琐.为进一步推广CADET的应用,依托高斯–埃尔米特积分法,提出了一种通用化的CADET数值算法.作为算法验证,以车辆行驶过程中的随机振动为例,建立了几种不同非线性悬架车辆的二自由度动力学模型,并将CADET通用化数值算法与传统CADET算法及蒙特卡罗法进行了对比分析.仿真结果表明,CADET的通用化数值算法可以达到满足应用要求的计算精度,这验证了所提数值算法的有效性,且具有更强的泛化应用于复杂非线性动力系统的价值.展开更多
The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the unc...The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the uncertainty is captured with a given discrete probability distribution over the groups. Such situations arise, for example, in the use of Bayesian imputation methods to assess race and ethnicity disparities with certain insurance, health, and financial data. A widely used method to implement this assessment is the Bayesian Improved Surname Geocoding (BISG) method which assigns a discrete probability over six race/ethnicity groups to an individual given the individual’s surname and address location. Using a Bayesian framework and Markov Chain Monte Carlo sampling from the joint posterior distribution of the group means, the probability of a disparity hypothesis is estimated. Four methods are developed and compared with an illustrative data set. Three of these methods are implemented in an R-code and one method in WinBUGS. These methods are programed for any number of groups between two and six inclusive. All the codes are provided in the appendices.展开更多
A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems...A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems on compact metric spaces were studied. Using the properties of Banach limit and uniform contractiveness, it was proved that the random iterating algorithms for infinite iterated function systems on compact metric spaces-satisfy ergodicity. So the random iterating algorithms for iterated function systems with condensation satisfy ergodicity, too.展开更多
文摘协方差分析描述函数法(covariance analysis describing function technique,CADET)在处理系统的随机响应问题上具有求解迅速、仿真精度高等优点.但对于复杂系统,其理论推导过程、求解系统解析响应方程较为复杂繁琐.为进一步推广CADET的应用,依托高斯–埃尔米特积分法,提出了一种通用化的CADET数值算法.作为算法验证,以车辆行驶过程中的随机振动为例,建立了几种不同非线性悬架车辆的二自由度动力学模型,并将CADET通用化数值算法与传统CADET算法及蒙特卡罗法进行了对比分析.仿真结果表明,CADET的通用化数值算法可以达到满足应用要求的计算精度,这验证了所提数值算法的有效性,且具有更强的泛化应用于复杂非线性动力系统的价值.
文摘The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the uncertainty is captured with a given discrete probability distribution over the groups. Such situations arise, for example, in the use of Bayesian imputation methods to assess race and ethnicity disparities with certain insurance, health, and financial data. A widely used method to implement this assessment is the Bayesian Improved Surname Geocoding (BISG) method which assigns a discrete probability over six race/ethnicity groups to an individual given the individual’s surname and address location. Using a Bayesian framework and Markov Chain Monte Carlo sampling from the joint posterior distribution of the group means, the probability of a disparity hypothesis is estimated. Four methods are developed and compared with an illustrative data set. Three of these methods are implemented in an R-code and one method in WinBUGS. These methods are programed for any number of groups between two and six inclusive. All the codes are provided in the appendices.
文摘A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems on compact metric spaces were studied. Using the properties of Banach limit and uniform contractiveness, it was proved that the random iterating algorithms for infinite iterated function systems on compact metric spaces-satisfy ergodicity. So the random iterating algorithms for iterated function systems with condensation satisfy ergodicity, too.