Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which...Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."展开更多
Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may ...Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers.展开更多
With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on ...With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms.We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models.Finally,simulations are presented.We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms,which are applied to explain their resistive switchings.展开更多
Superalloy thin-walled structures are achieved mainly by brazing,but the deformation process of brazed joints is non-uniform,making it a challenging research task.This paper records a thorough investigation of the eff...Superalloy thin-walled structures are achieved mainly by brazing,but the deformation process of brazed joints is non-uniform,making it a challenging research task.This paper records a thorough investigation of the effect of brazing parameters on the microstructure of joints and its mechanical properties,which mainly inquires into the deformation and fracture mechanisms in the shearing process of GH99/BNi-5a/GH99 joints.The macroscopic-microscopic deformation mechanism of the brazing interface during shearing was studied by Crystal Plasticity(CP)and Molecular Dynamics(MD)on the basis of the optimal brazing parameters.The experimental results show that the brazing interface is mainly formed by(Ni,Cr,Co)(s,s)and possesses a shear strength of approximately 546 MPa.The shearing fracture of the brazed joint occurs along the brazing seam,displaying the characteristics of intergranular fracture.MD simulations show that dislocations disassociate and transform into fine twinning with increased strain.CP simulated the shear deformation process of the brazed joint.The multiscale simulation results are consistent with the experimental results.The mechanical properties of thin-walled materials for brazing are predicted using MD and CP methods.展开更多
The stick-slip action of strike-slip faults poses a significant threat to the safety and stability of underground structures.In this study,the north-east area of the Longmenshan fault,Sichuan,provides the geological b...The stick-slip action of strike-slip faults poses a significant threat to the safety and stability of underground structures.In this study,the north-east area of the Longmenshan fault,Sichuan,provides the geological background;the rheological characteristics of the crustal lithosphere and the nonlinear interactions between plates are described by Burger’s viscoelastic constitutive model and the friction constitutive model,respectively.A large-scale global numerical model for plate squeezing analysis is established,and the seemingly periodic stick-slip action of faults at different crust depths is simulated.For a second model at a smaller scale,a local finite element model(sub-model),the time history of displacement at a ground level location on the Longmenshan fault plane in a stick-slip action is considered as the displacement loading.The integration of these models,creating a multi-scale modeling method,is used to evaluate the crack propagation and mechanical response of a tunnel subjected to strike-slip faulting.The determinations of the recurrence interval of stick-slip action and the cracking characteristics of the tunnel are in substantial agreement with the previous field investigation and experimental results,validating the multi-scale modeling method.It can be concluded that,regardless of stratum stiffness,initial cracks first occur at the inverted arch of the tunnel in the footwall,on the squeezed side under strike-slip faulting.The smaller the stratum stiffness is,the smaller the included angle between the crack expansion and longitudinal direction of the tunnel,and the more extensive the crack expansion range.For the tunnel in a high stiffness stratum,both shear and bending failures occur on the lining under strike-slip faulting,while for that in the low stiffness stratum,only bending failure occurs on the lining.展开更多
According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important exis...According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.展开更多
Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the...Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the surface quality and accuracy. At present, the theoretical models of grinding force are mostly based on the assumption of uniform or simplified morphological characteristics of grains, which is inconsistent with the actual grains. Especially for non-engineering grinding wheel,most geometric characteristics of grains are ignored, resulting in the calculation accuracy that cannot guide practical production. Based on this, an improved grinding force model based on random grain geometric characteristics is proposed in this paper. Firstly, the surface topography model of CBN grinding wheel is established, and the effective grain determination mechanism in grinding zone is revealed. Based on the known grinding force model and mechanical behavior of interaction between grains and workpiece in different stages, the concept of grain effective action area is proposed. The variation mechanism of effective action area under the influence of grain geometric and spatial characteristics is deeply analyzed, and the calculation method under random combination of five influencing parameters is obtained. The numerical simulation is carried out to reveal the dynamic variation process of grinding force in grinding zone. In order to verify the theoretical model, the experiments of dry grinding Ti-6Al-4 V are designed. The experimental results show that under different machining parameters, the results of numerical calculation and experimental measurement are in good agreement, and the minimum error value is only 2.1 %, which indicates that the calculation accuracy of grinding force model meets the requirements and is feasible. This study will provide a theoretical basis for optimizing the wheel structure, effectively controlling the grinding force range, adjusting the grinding zone temperature and improving the workpiece machining quality in the industrial grinding process.展开更多
A new unified macro- and micro-mechanics failure analysis method for composite structures was developed in order to take the effects of composite micro structure into consideration. In this method, the macro stress di...A new unified macro- and micro-mechanics failure analysis method for composite structures was developed in order to take the effects of composite micro structure into consideration. In this method, the macro stress distribution of composite structure was calculated by commercial finite element analysis software. According to the macro stress distribution, the damage point was searched and the micro-stress distribution was calculated by reformulated finite-volume direct averaging micromechanics (FVDAM), which was a multi-scale finite element method for composite. The micro structure failure modes were estimated with the failure strength of constituents. A unidirectional composite plate with a circular hole in the center under two kinds of loads was analyzed with the traditional macro-mechanical failure analysis method and the unified macro- and micro-mechanics failure analysis method. The results obtained by the two methods are consistent, which show this new method's accuracy and efficiency.展开更多
Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existi...Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existingmethods face challenges such as a high number of parameters and low recognition accuracy,which hinders their application in tea plantation monitoring equipment.This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves,to address these challenges.The proposed method first embeds a Coordinate Attention(CA)module into the originalMobileNetV2 network,enabling the model to locate disease regions accurately.Secondly,a Multi-branch Parallel Convolution(MPC)module is employed to extract disease features across multiple scales,improving themodel’s adaptability to different disease scales.Finally,the AutoML for Model Compression(AMC)is used to compress themodel and reduce computational complexity.Experimental results indicate that our proposed algorithm attains an average accuracy of 96.12%on our self-built tea leaf disease dataset,surpassing the original MobileNetV2 by 1.91%.Furthermore,the number of model parameters have been reduced by 40%,making itmore suitable for practical application in tea plantation environments.展开更多
文摘Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."
基金National Program on Key Basic Research Project of China(973) under Grant No.2011CB013603the National Natural Science Foundation of China under Grant Nos.51427901,91315301 and 51408410the Natural Science Foundation of Tianjin,China under Grant No.15JCQNJC07200
文摘Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60921062)
文摘With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms.We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models.Finally,simulations are presented.We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms,which are applied to explain their resistive switchings.
基金support from the National Natural Science Foundation of China(Grant Nos.52175307)the Taishan Scholars Foundation of Shandong Province(No.tsqn201812128)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2023JQ021No.ZR2020QE175).
文摘Superalloy thin-walled structures are achieved mainly by brazing,but the deformation process of brazed joints is non-uniform,making it a challenging research task.This paper records a thorough investigation of the effect of brazing parameters on the microstructure of joints and its mechanical properties,which mainly inquires into the deformation and fracture mechanisms in the shearing process of GH99/BNi-5a/GH99 joints.The macroscopic-microscopic deformation mechanism of the brazing interface during shearing was studied by Crystal Plasticity(CP)and Molecular Dynamics(MD)on the basis of the optimal brazing parameters.The experimental results show that the brazing interface is mainly formed by(Ni,Cr,Co)(s,s)and possesses a shear strength of approximately 546 MPa.The shearing fracture of the brazed joint occurs along the brazing seam,displaying the characteristics of intergranular fracture.MD simulations show that dislocations disassociate and transform into fine twinning with increased strain.CP simulated the shear deformation process of the brazed joint.The multiscale simulation results are consistent with the experimental results.The mechanical properties of thin-walled materials for brazing are predicted using MD and CP methods.
基金supported by the Key Projects for International Science and Technology Innovation Cooperation between Governments(No.2022YFE0104300)National Natural Science Foundation of China(Grant No.52130808)+1 种基金Scientific and Technical Exploitation Program of China Railway Design Corporation(No.2020YY240610)Scientific and Technical Exploitation Program of China Railway(No.K2020G033).
文摘The stick-slip action of strike-slip faults poses a significant threat to the safety and stability of underground structures.In this study,the north-east area of the Longmenshan fault,Sichuan,provides the geological background;the rheological characteristics of the crustal lithosphere and the nonlinear interactions between plates are described by Burger’s viscoelastic constitutive model and the friction constitutive model,respectively.A large-scale global numerical model for plate squeezing analysis is established,and the seemingly periodic stick-slip action of faults at different crust depths is simulated.For a second model at a smaller scale,a local finite element model(sub-model),the time history of displacement at a ground level location on the Longmenshan fault plane in a stick-slip action is considered as the displacement loading.The integration of these models,creating a multi-scale modeling method,is used to evaluate the crack propagation and mechanical response of a tunnel subjected to strike-slip faulting.The determinations of the recurrence interval of stick-slip action and the cracking characteristics of the tunnel are in substantial agreement with the previous field investigation and experimental results,validating the multi-scale modeling method.It can be concluded that,regardless of stratum stiffness,initial cracks first occur at the inverted arch of the tunnel in the footwall,on the squeezed side under strike-slip faulting.The smaller the stratum stiffness is,the smaller the included angle between the crack expansion and longitudinal direction of the tunnel,and the more extensive the crack expansion range.For the tunnel in a high stiffness stratum,both shear and bending failures occur on the lining under strike-slip faulting,while for that in the low stiffness stratum,only bending failure occurs on the lining.
文摘According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.
基金supported by the National Natural Science Foundation of China(Nos.51975305,51905289,52105264)the Key Project of Shandong Province,China(No.ZR2020KE027)+1 种基金the Major Research Project of Shandong Province,China(Nos.2019GGX104040 and 2019GSF108236)the Natural Science Foundation of Shandong Province,China(No.ZR2021QE116).
文摘Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the surface quality and accuracy. At present, the theoretical models of grinding force are mostly based on the assumption of uniform or simplified morphological characteristics of grains, which is inconsistent with the actual grains. Especially for non-engineering grinding wheel,most geometric characteristics of grains are ignored, resulting in the calculation accuracy that cannot guide practical production. Based on this, an improved grinding force model based on random grain geometric characteristics is proposed in this paper. Firstly, the surface topography model of CBN grinding wheel is established, and the effective grain determination mechanism in grinding zone is revealed. Based on the known grinding force model and mechanical behavior of interaction between grains and workpiece in different stages, the concept of grain effective action area is proposed. The variation mechanism of effective action area under the influence of grain geometric and spatial characteristics is deeply analyzed, and the calculation method under random combination of five influencing parameters is obtained. The numerical simulation is carried out to reveal the dynamic variation process of grinding force in grinding zone. In order to verify the theoretical model, the experiments of dry grinding Ti-6Al-4 V are designed. The experimental results show that under different machining parameters, the results of numerical calculation and experimental measurement are in good agreement, and the minimum error value is only 2.1 %, which indicates that the calculation accuracy of grinding force model meets the requirements and is feasible. This study will provide a theoretical basis for optimizing the wheel structure, effectively controlling the grinding force range, adjusting the grinding zone temperature and improving the workpiece machining quality in the industrial grinding process.
基金co-supported by National Basic Research Program of China, National Natural Science Foundation of China(No. 51075204)Aeronautical Science Foundation of China (No.2009ZB52028, No. 2012ZB52026)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (No. 20070287039)NUAA Research Funding (No. NZ2012106)
文摘A new unified macro- and micro-mechanics failure analysis method for composite structures was developed in order to take the effects of composite micro structure into consideration. In this method, the macro stress distribution of composite structure was calculated by commercial finite element analysis software. According to the macro stress distribution, the damage point was searched and the micro-stress distribution was calculated by reformulated finite-volume direct averaging micromechanics (FVDAM), which was a multi-scale finite element method for composite. The micro structure failure modes were estimated with the failure strength of constituents. A unidirectional composite plate with a circular hole in the center under two kinds of loads was analyzed with the traditional macro-mechanical failure analysis method and the unified macro- and micro-mechanics failure analysis method. The results obtained by the two methods are consistent, which show this new method's accuracy and efficiency.
基金supported by National Key Research and Development Program(No.2016YFD0201305-07)Guizhou Provincial Basic Research Program(Natural Science)(No.ZK[2023]060)Open Fund Project in Semiconductor Power Device Reliability Engineering Center of Ministry of Education(No.ERCMEKFJJ2019-06).
文摘Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existingmethods face challenges such as a high number of parameters and low recognition accuracy,which hinders their application in tea plantation monitoring equipment.This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves,to address these challenges.The proposed method first embeds a Coordinate Attention(CA)module into the originalMobileNetV2 network,enabling the model to locate disease regions accurately.Secondly,a Multi-branch Parallel Convolution(MPC)module is employed to extract disease features across multiple scales,improving themodel’s adaptability to different disease scales.Finally,the AutoML for Model Compression(AMC)is used to compress themodel and reduce computational complexity.Experimental results indicate that our proposed algorithm attains an average accuracy of 96.12%on our self-built tea leaf disease dataset,surpassing the original MobileNetV2 by 1.91%.Furthermore,the number of model parameters have been reduced by 40%,making itmore suitable for practical application in tea plantation environments.