期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Random noise suppression for seismic data using a non-local Bayes algorithm 被引量:3
1
作者 Chang De-Kuan Yang Wu-Yang +3 位作者 Wang Yi-Hui Yang Qing Wei Xin-Jian and Feng Xiao-Ying 《Applied Geophysics》 SCIE CSCD 2018年第1期91-98,149,共9页
For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in th... For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data. 展开更多
关键词 Non-local Bayes random noise suppression BLOCK-MATCHING Gaussian model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部