The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric v...The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.展开更多
In this letter, an improved three-step search algorithm is presented, which uses both gray and chromatic information to boost the performance with random optimization and converge the motion vectors to global optima. ...In this letter, an improved three-step search algorithm is presented, which uses both gray and chromatic information to boost the performance with random optimization and converge the motion vectors to global optima. Experimental results show that this algorithm can efficiently improve the PSNR after motion compensation.展开更多
Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improv...Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improve the precision of survey estimates with cost-effective sampling efforts. We developed a simulation approach to evaluate and optimize the stratification scheme for a fishery-independent survey with multiple goals including estimation of abundance indices of individual species and species diversity indices. We compared the performances of the sampling designs with different stratification schemes for different goals over different months. Gains in precision of survey estimates from the stratification schemes were acquired compared to simple random sampling design for most indices. The stratification scheme with five strata performed the best. This study showed that the loss of precision of survey estimates due to the reduction of sampling efforts could be compensated by improved stratification schemes, which would reduce the cost and negative impacts of survey trawling on those species with low abundance in the fishery-independent survey. This study also suggests that optimization of a survey design differed with different survey objectives. A post-survey analysis can improve the stratification scheme of fishery-independent survey designs.展开更多
According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flo...According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment.展开更多
Automated grading of colon biopsy images across all magnifications is challenging because of tailored segmentation and dependent features on each magnification.This work presents a novel approach of robust magnificati...Automated grading of colon biopsy images across all magnifications is challenging because of tailored segmentation and dependent features on each magnification.This work presents a novel approach of robust magnification-independent colon cancer grading framework to distinguish colon biopsy images into four classes:normal,well,moderate,and poor.The contribution of this research is to develop a magnification invariant hybrid feature set comprising cartoon feature,Gabor wavelet,wavelet moments,HSV histogram,color auto-correlogram,color moments,and morphological features that can be used to characterize different grades.Besides,the classifier is modeled as a multiclass structure with six binary class Bayesian optimized random forest(BO-RF)classifiers.This study uses four datasets(two collected from Indian hospitals—Ishita Pathology Center(IPC)of 4X,10X,and 40X and Aster Medcity(AMC)of 10X,20X,and 40X—two benchmark datasets—gland segmentation(GlaS)of 20X and IMEDIATREAT of 10X)comprising multiple microscope magnifications.Experimental results demonstrate that the proposed method outperforms the other methods used for colon cancer grading in terms of accuracy(97.25%-IPC,94.40%-AMC,97.58%-GlaS,99.16%-Imediatreat),sensitivity(0.9725-IPC,0.9440-AMC,0.9807-GlaS,0.9923-Imediatreat),specificity(0.9908-IPC,0.9813-AMC,0.9907-GlaS,0.9971-Imediatreat)and F-score(0.9725-IPC,0.9441-AMC,0.9780-GlaS,0.9923-Imediatreat).The generalizability of the model to any magnified input image is validated by training in one dataset and testing in another dataset,highlighting strong concordance in multiclass classification and evidencing its effective use in the first level of automatic biopsy grading and second opinion.展开更多
Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swa...Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swarm optimization (PSO) algorithm is presented. Firstly, an improved version of the original PSO, cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of the conventional PSO. Secondly, the way of finding PID coefficient will be studied by using this algorithm. Finally, the experimental results and practical works demonstrate that the CRPSO-PID controller achieves a good performance.展开更多
An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features...An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features are extracted from the optimal random image components using greedy approach. These feature vectors are then projected to subspaces for dimensionality reduction which is used for solving linear problems. The design of Gabor filters, PCA and MDA are crucial processes used for facial feature extraction. The FERET, ORL and YALE face databases are used to generate the results. Experiments show that optimal random image component selection (ORICS) plus MDA outperforms ORICS and subspace projection approach such as ORICS plus PCA. Our method achieves 96.25%, 99.44% and 100% recognition accuracy on the FERET, ORL and YALE databases for 30% training respectively. This is a considerably improved performance compared with other standard methodologies described in the literature.展开更多
In this paper, a nonlinear model predictive control strategy which utilizes a probabilistic sparse kernel learning technique called relevance vector regression (RVR) and particle swarm optimization with controllable...In this paper, a nonlinear model predictive control strategy which utilizes a probabilistic sparse kernel learning technique called relevance vector regression (RVR) and particle swarm optimization with controllable random exploration velocity (PSO-CREV) is applied to a catalytic continuous stirred tank reactor (CSTR) process. An accurate reliable nonlinear model is first identified by RVR with a radial basis function (RBF) kernel and then the optimization of control sequence is speeded up by PSO-CREV. Additional stochastic behavior in PSO-CREV is omitted for faster convergence of nonlinear optimization. An improved system performance is guaranteed by an accurate sparse predictive model and an efficient and fast optimization algorithm. To compare the performance, model predictive control (MPC) using a deterministic sparse kernel learning technique called Least squares support vector machines (LS-SVM) regression is done on a CSTR. Relevance vector regression shows improved tracking performance with very less computation time which is much essential for real time control.展开更多
基金the National Social Science Foundation of China(No.18AJL014)。
文摘The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.
文摘In this letter, an improved three-step search algorithm is presented, which uses both gray and chromatic information to boost the performance with random optimization and converge the motion vectors to global optima. Experimental results show that this algorithm can efficiently improve the PSNR after motion compensation.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201305030the Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120132130001
文摘Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improve the precision of survey estimates with cost-effective sampling efforts. We developed a simulation approach to evaluate and optimize the stratification scheme for a fishery-independent survey with multiple goals including estimation of abundance indices of individual species and species diversity indices. We compared the performances of the sampling designs with different stratification schemes for different goals over different months. Gains in precision of survey estimates from the stratification schemes were acquired compared to simple random sampling design for most indices. The stratification scheme with five strata performed the best. This study showed that the loss of precision of survey estimates due to the reduction of sampling efforts could be compensated by improved stratification schemes, which would reduce the cost and negative impacts of survey trawling on those species with low abundance in the fishery-independent survey. This study also suggests that optimization of a survey design differed with different survey objectives. A post-survey analysis can improve the stratification scheme of fishery-independent survey designs.
基金Project(50911130366) supported by the National Natural Science Foundation of China
文摘According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment.
基金This work was partially supported by the Research Groups Program(Research Group Number RG-1439-033),under the Deanship of Scientific Research,King Saud University,Riyadh,Saudi Arabia.
文摘Automated grading of colon biopsy images across all magnifications is challenging because of tailored segmentation and dependent features on each magnification.This work presents a novel approach of robust magnification-independent colon cancer grading framework to distinguish colon biopsy images into four classes:normal,well,moderate,and poor.The contribution of this research is to develop a magnification invariant hybrid feature set comprising cartoon feature,Gabor wavelet,wavelet moments,HSV histogram,color auto-correlogram,color moments,and morphological features that can be used to characterize different grades.Besides,the classifier is modeled as a multiclass structure with six binary class Bayesian optimized random forest(BO-RF)classifiers.This study uses four datasets(two collected from Indian hospitals—Ishita Pathology Center(IPC)of 4X,10X,and 40X and Aster Medcity(AMC)of 10X,20X,and 40X—two benchmark datasets—gland segmentation(GlaS)of 20X and IMEDIATREAT of 10X)comprising multiple microscope magnifications.Experimental results demonstrate that the proposed method outperforms the other methods used for colon cancer grading in terms of accuracy(97.25%-IPC,94.40%-AMC,97.58%-GlaS,99.16%-Imediatreat),sensitivity(0.9725-IPC,0.9440-AMC,0.9807-GlaS,0.9923-Imediatreat),specificity(0.9908-IPC,0.9813-AMC,0.9907-GlaS,0.9971-Imediatreat)and F-score(0.9725-IPC,0.9441-AMC,0.9780-GlaS,0.9923-Imediatreat).The generalizability of the model to any magnified input image is validated by training in one dataset and testing in another dataset,highlighting strong concordance in multiclass classification and evidencing its effective use in the first level of automatic biopsy grading and second opinion.
基金the National Basic Research Program (973) of China (No. 2004CB720703)
文摘Cryogenic ground support equipment (CGSE) is an important part of a famous particle physics experiment - AMS-02. In this paper a design method which optimizes PID parameters of CGSE control system via the particle swarm optimization (PSO) algorithm is presented. Firstly, an improved version of the original PSO, cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of the conventional PSO. Secondly, the way of finding PID coefficient will be studied by using this algorithm. Finally, the experimental results and practical works demonstrate that the CRPSO-PID controller achieves a good performance.
文摘An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features are extracted from the optimal random image components using greedy approach. These feature vectors are then projected to subspaces for dimensionality reduction which is used for solving linear problems. The design of Gabor filters, PCA and MDA are crucial processes used for facial feature extraction. The FERET, ORL and YALE face databases are used to generate the results. Experiments show that optimal random image component selection (ORICS) plus MDA outperforms ORICS and subspace projection approach such as ORICS plus PCA. Our method achieves 96.25%, 99.44% and 100% recognition accuracy on the FERET, ORL and YALE databases for 30% training respectively. This is a considerably improved performance compared with other standard methodologies described in the literature.
文摘In this paper, a nonlinear model predictive control strategy which utilizes a probabilistic sparse kernel learning technique called relevance vector regression (RVR) and particle swarm optimization with controllable random exploration velocity (PSO-CREV) is applied to a catalytic continuous stirred tank reactor (CSTR) process. An accurate reliable nonlinear model is first identified by RVR with a radial basis function (RBF) kernel and then the optimization of control sequence is speeded up by PSO-CREV. Additional stochastic behavior in PSO-CREV is omitted for faster convergence of nonlinear optimization. An improved system performance is guaranteed by an accurate sparse predictive model and an efficient and fast optimization algorithm. To compare the performance, model predictive control (MPC) using a deterministic sparse kernel learning technique called Least squares support vector machines (LS-SVM) regression is done on a CSTR. Relevance vector regression shows improved tracking performance with very less computation time which is much essential for real time control.