期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position 被引量:2
1
作者 Faming Huang Ronghui Li +3 位作者 Filippo Catani Xiaoting Zhou Ziqiang Zeng Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ... The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies. 展开更多
关键词 Landslide susceptibility prediction random landslide position errors Uncertainty analysis Multi-layer perceptron random forest Semi-supervised machine learning
下载PDF
Moderate deviations principle for products of sums of random variables
2
作者 MIAO Yu MU JianYong 《Science China Mathematics》 SCIE 2011年第4期769-784,共16页
Let(Xn)n≥1 be a sequence of independent identically distributed(i.i.d.) positive random variables with EX1 = μ,Var(X1) = σ2.In the present paper,we establish the moderate deviations principle for the products of pa... Let(Xn)n≥1 be a sequence of independent identically distributed(i.i.d.) positive random variables with EX1 = μ,Var(X1) = σ2.In the present paper,we establish the moderate deviations principle for the products of partial sums(πnk=1Sk/n!μn)1/(γbn√(2n))1where γ = σ/μ denotes the coefficient of variation and(bn) is the moderate deviations scale. 展开更多
关键词 moderate deviations principle products of sums independent identically distribution positive random variables
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部