针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。...针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。展开更多
针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小...针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小二乘法对剩余有效点进行平面拟合,计算模型参数。实验结果表明,该方法与传统的特征值法、最小二乘法相比,能提高参数的估算精度,更适合对含有不同异常值及误差的点云数据进行拟合,是一种稳健的平面拟合方法。展开更多
文摘针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。
文摘针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小二乘法对剩余有效点进行平面拟合,计算模型参数。实验结果表明,该方法与传统的特征值法、最小二乘法相比,能提高参数的估算精度,更适合对含有不同异常值及误差的点云数据进行拟合,是一种稳健的平面拟合方法。