期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进的Random Subspace 的客户投诉分类方法 被引量:3
1
作者 杨颖 王珺 王刚 《计算机工程与应用》 CSCD 北大核心 2020年第13期230-235,共6页
电信业的客户投诉不断增多而又亟待高效处理。针对电信客户投诉数据的特点,提出了一种面向高维数据的改进的集成学习分类方法。该方法综合考虑客户投诉中的文本信息及客户通讯状态信息,基于Random Subspace方法,以支持向量机(Support Ve... 电信业的客户投诉不断增多而又亟待高效处理。针对电信客户投诉数据的特点,提出了一种面向高维数据的改进的集成学习分类方法。该方法综合考虑客户投诉中的文本信息及客户通讯状态信息,基于Random Subspace方法,以支持向量机(Support Vector Machine,SVM)为基分类器,采用证据推理(Evidential Reasoning,ER)规则为一种新的集成策略,构造分类模型对电信客户投诉进行分类。所提模型和方法在某电信公司客户投诉数据上进行了验证,实验结果显示该方法能够显著提高客户投诉分类的准确率和投诉处理效率。 展开更多
关键词 客户投诉分类 random subspace方法 支持向量机 证据推理规则
下载PDF
Random Subspace Sampling for Classification with Missing Data
2
作者 曹云浩 吴建鑫 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第2期472-486,共15页
Many real-world datasets suffer from the unavoidable issue of missing values,and therefore classification with missing data has to be carefully handled since inadequate treatment of missing values will cause large err... Many real-world datasets suffer from the unavoidable issue of missing values,and therefore classification with missing data has to be carefully handled since inadequate treatment of missing values will cause large errors.In this paper,we propose a random subspace sampling method,RSS,by sampling missing items from the corresponding feature histogram distributions in random subspaces,which is effective and efficient at different levels of missing data.Unlike most established approaches,RSS does not train on fixed imputed datasets.Instead,we design a dynamic training strategy where the filled values change dynamically by resampling during training.Moreover,thanks to the sampling strategy,we design an ensemble testing strategy where we combine the results of multiple runs of a single model,which is more efficient and resource-saving than previous ensemble methods.Finally,we combine these two strategies with the random subspace method,which makes our estimations more robust and accurate.The effectiveness of the proposed RSS method is well validated by experimental studies. 展开更多
关键词 missing data random subspace neural network ensemble learning
原文传递
Ensemble machine learning models based on Reduced Error Pruning Tree for prediction of rainfall-induced landslides
3
作者 Binh Thai Pham Abolfazl Jaafari +9 位作者 Trung Nguyen-Thoi Tran Van Phong Huu Duy Nguyen Neelima Satyam Md Masroor Sufia Rehman Haroon Sajjad Mehebub Sahana Hiep Van Le Indra Prakash 《International Journal of Digital Earth》 SCIE 2021年第5期575-596,共22页
In this paper,we developed highly accurate ensemble machine learning models integrating Reduced Error Pruning Tree(REPT)as a base classifier with the Bagging(B),Decorate(D),and Random Subspace(RSS)ensemble learning te... In this paper,we developed highly accurate ensemble machine learning models integrating Reduced Error Pruning Tree(REPT)as a base classifier with the Bagging(B),Decorate(D),and Random Subspace(RSS)ensemble learning techniques for spatial prediction of rainfallinduced landslides in the Uttarkashi district,located in the Himalayan range,India.To do so,a total of 103 historical landslide events were linked to twelve conditioning factors for generating training and validation datasets.Root Mean Square Error(RMSE)and Area Under the receiver operating characteristic Curve(AUC)were used to evaluate the training and validation performances of the models.The results showed that the single REPT model and its derived ensembles provided a satisfactory accuracy for the prediction of landslides.The D-REPT model with RMSE=0.351 and AUC=0.907 was identified as the most accurate model,followed by RSS-REPT(RMSE=0.353 and AUC=0.898),B-REPT(RMSE=0.396 and AUC=0.876),and the single REPT model(RMSE=0.398 and AUC=0.836),respectively.The prominent ensemble models proposed and verified in this study provide engineers and modelers with insights for development of more advanced predictive models for different landslide-susceptible areas around the world. 展开更多
关键词 Machine learning ensemble modeling BAGGING Decorate random subspace
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部