We investigate how the splicing mode of a holographic element(hogel)affects the reconstruction of a 3 D scene to improve the reconstruction resolution of a holographic stereogram fabricated using the effective perspec...We investigate how the splicing mode of a holographic element(hogel)affects the reconstruction of a 3 D scene to improve the reconstruction resolution of a holographic stereogram fabricated using the effective perspective image segmentation and mosaicking method(EPISM).First,the effect of hogel spatial multiplexing on holographic recording and reconstruction is studied based on the mechanism of recording interference fringes in the holographic recording medium.Second,combined with the influence of multiple exposures on the hologram's diffraction efficiency,the diffraction efficiency of the holographic stereogram is analyzed in the spatial multiplexing mode.The holographic stereogram is then regarded as a special optical imaging system.The theory of spatial bandwidth product is adopted to describe the comprehensive resolution of the holographic stereogram,which explains why hogel spatial multiplexing can significantly improve the reconstruction resolution of a holographic stereogram.Compared with the traditional printing method under the same parameters in optical experiments,hogel spatial multiplexing has a lower diffraction efficiency but a higher quality of reconstructed image,consistent with the theoretical analysis.展开更多
由于人左右眼间距的存在,使得同一空间物体在左右眼视网膜上的投影存在位置差异,称之为视差.左右眼视网膜获取的信息最初在初级视皮层(V1区)进行融合,该区域有大量对视差敏感的神经元.关于它们的视差选择特性,目前比较公认的计算模型是...由于人左右眼间距的存在,使得同一空间物体在左右眼视网膜上的投影存在位置差异,称之为视差.左右眼视网膜获取的信息最初在初级视皮层(V1区)进行融合,该区域有大量对视差敏感的神经元.关于它们的视差选择特性,目前比较公认的计算模型是视差能量模型,然而该模型却无法解释V1区神经元对反相关随机点立体图(Anti-correlated random dot stereograms,aRDS)的响应要比对随机点立体图的响应弱这一神经生理学发现.为此,本文提出了一种加权视差能量模型:首先,利用左右眼感受野内的信号差异对神经元的响应能量进行调制,然后再结合神经元之间的相互作用来计算细胞群响应,从而得到图像视差.本文旨在探索基于神经生理学的视差计算方法,主要贡献有:1)加权视差能量模型能够很好地解释V1区神经元对反随机点立体图的响应比随机点立体图响应弱的生理特性;2)加权视差能量模型的视差计算结果精度比现有基于神经生理学的模型更高,甚至高于一些传统的计算机视觉方法.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB1104500)the National Natural Science Foundation of China(Grant No.61775240)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201432)。
文摘We investigate how the splicing mode of a holographic element(hogel)affects the reconstruction of a 3 D scene to improve the reconstruction resolution of a holographic stereogram fabricated using the effective perspective image segmentation and mosaicking method(EPISM).First,the effect of hogel spatial multiplexing on holographic recording and reconstruction is studied based on the mechanism of recording interference fringes in the holographic recording medium.Second,combined with the influence of multiple exposures on the hologram's diffraction efficiency,the diffraction efficiency of the holographic stereogram is analyzed in the spatial multiplexing mode.The holographic stereogram is then regarded as a special optical imaging system.The theory of spatial bandwidth product is adopted to describe the comprehensive resolution of the holographic stereogram,which explains why hogel spatial multiplexing can significantly improve the reconstruction resolution of a holographic stereogram.Compared with the traditional printing method under the same parameters in optical experiments,hogel spatial multiplexing has a lower diffraction efficiency but a higher quality of reconstructed image,consistent with the theoretical analysis.
文摘由于人左右眼间距的存在,使得同一空间物体在左右眼视网膜上的投影存在位置差异,称之为视差.左右眼视网膜获取的信息最初在初级视皮层(V1区)进行融合,该区域有大量对视差敏感的神经元.关于它们的视差选择特性,目前比较公认的计算模型是视差能量模型,然而该模型却无法解释V1区神经元对反相关随机点立体图(Anti-correlated random dot stereograms,aRDS)的响应要比对随机点立体图的响应弱这一神经生理学发现.为此,本文提出了一种加权视差能量模型:首先,利用左右眼感受野内的信号差异对神经元的响应能量进行调制,然后再结合神经元之间的相互作用来计算细胞群响应,从而得到图像视差.本文旨在探索基于神经生理学的视差计算方法,主要贡献有:1)加权视差能量模型能够很好地解释V1区神经元对反随机点立体图的响应比随机点立体图响应弱的生理特性;2)加权视差能量模型的视差计算结果精度比现有基于神经生理学的模型更高,甚至高于一些传统的计算机视觉方法.