Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
Objective:To reveal the distribution characteristics and demographic factors of traditional Chinese medicine(TCM)constitution among elderly individuals in China.Methods: Elderly individuals from seven regions in China...Objective:To reveal the distribution characteristics and demographic factors of traditional Chinese medicine(TCM)constitution among elderly individuals in China.Methods: Elderly individuals from seven regions in China were selected as samples in this study using a multistage cluster random sampling method.The basic information questionnaire and Constitution in Chinese Medicine Questionnaire(Elderly Edition)were used.Descriptive statistical analysis,chi-squared tests,and binary logistic regression analysis were used.Results: The single balanced constitution(BC)accounted for 23.9%.The results of the major TCM constitution types showed that BC(43.2%)accounted for the largest proportion and unbalanced constitutions ranged from 0.9%to 15.7%.East China region(odds ratio[OR]=2.097;95%confidence interval[CI],1.912 to 2.301),married status(OR=1.341;95%CI,1.235 to 1.457),and managers(OR=1.254;95%CI,1.044 to 1.505)were significantly associated with BC.Age>70 years was associated with qi-deficiency constitution and blood stasis constitution(BSC).Female sex was significantly associated with yang-deficiency constitution(OR=1.646;95%CI,1.52 to 1.782).Southwest region was significantly associated with phlegm-dampness constitution(OR=1.809;95%CI,1.569 to 2.086).North China region was significantly associated with inherited special constitution(OR=2.521;95%CI,1.569 to 4.05).South China region(OR=2.741;95%CI,1.997 to 1.3.763),Central China region(OR=8.889;95%CI,6.676 to 11.835),senior middle school education(OR=2.442;95%CI,1.932 to 3.088),and managers(OR=1.804;95%CI,1.21 to 2.69)were significantly associated with BSC.Conclusions: This study defined the distribution characteristics and demographic factors of TCM constitution in the elderly population.Adjusting and improving unbalanced constitutions,which are correlated with diseases,can help promote healthy aging through the scientific management of these demographic factors.展开更多
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ...In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.展开更多
Direct measurement of snow water equivalent(SWE)in snow-dominated mountainous areas is difficult,thus its prediction is essential for water resources management in such areas.In addition,because of nonlinear trend of ...Direct measurement of snow water equivalent(SWE)in snow-dominated mountainous areas is difficult,thus its prediction is essential for water resources management in such areas.In addition,because of nonlinear trend of snow spatial distribution and the multiple influencing factors concerning the SWE spatial distribution,statistical models are not usually able to present acceptable results.Therefore,applicable methods that are able to predict nonlinear trends are necessary.In this research,to predict SWE,the Sohrevard Watershed located in northwest of Iran was selected as the case study.Database was collected,and the required maps were derived.Snow depth(SD)at 150 points with two sampling patterns including systematic random sampling and Latin hypercube sampling(LHS),and snow density at 18 points were randomly measured,and then SWE was calculated.SWE was predicted using artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS)and regression methods.The results showed that the performance of ANN and ANFIS models with two sampling patterns were observed better than the regression method.Moreover,based on most of the efficiency criteria,the efficiency of ANN,ANFIS and regression methods under LHS pattern were observed higher than the systematic random sampling pattern.However,there were no significant differences between the two methods of ANN and ANFIS in SWE prediction.Data of both two sampling patterns had the highest sensitivity to the elevation.In addition,the LHS and the systematic random sampling patterns had the least sensitivity to the profile curvature and plan curvature,respectively.展开更多
On the basis of the principles of simple random sampling, the statistical model of rate of disfigurement (RD) is put forward and described in detail. According to the definition of simple random sampling for the attri...On the basis of the principles of simple random sampling, the statistical model of rate of disfigurement (RD) is put forward and described in detail. According to the definition of simple random sampling for the attribute data in GIS, the mean and variance of the RD are deduced as the characteristic value of the statistical model in order to explain the feasibility of the accuracy measurement of the attribute data in GIS by using the RD. Moreover, on the basis of the mean and variance of the RD, the quality assessment method for attribute data of vector maps during the data collecting is discussed. The RD spread graph is also drawn to see whether the quality of the attribute data is under control. The RD model can synthetically judge the quality of attribute data, which is different from other measurement coefficients that only discuss accuracy of classification.展开更多
This article proposes two new Ranked Set Sampling(RSS)designs for estimating the population parameters:Simple Z Ranked Set Sampling(SZRSS)and Generalized Z Ranked Set Sampling(GZRSS).These designs provide unbiased est...This article proposes two new Ranked Set Sampling(RSS)designs for estimating the population parameters:Simple Z Ranked Set Sampling(SZRSS)and Generalized Z Ranked Set Sampling(GZRSS).These designs provide unbiased estimators for the mean of symmetric distributions.It is shown that for non-uniform symmetric distributions,the estimators of the mean under the suggested designs are more efcient than those obtained by RSS,Simple Random Sampling(SRS),extreme RSS and truncation based RSS designs.Also,the proposed RSS schemes outperform other RSS schemes and provide more efcient estimates than their competitors under imperfect rankings.The suggested mean estimators under perfect and imperfect rankings are more efcient than the linear regression estimator under SRS.Our proposed RSS designs are also extended to cover the estimation of the population median.Real data is used to examine wthe usefulness and efciency of our estimators.展开更多
The main aim of this study was to evaluate methods for fixed area and distance sampling in the Zagros open forest area in western Iran. Basic forest management and planning required appropriate quantitative and qualit...The main aim of this study was to evaluate methods for fixed area and distance sampling in the Zagros open forest area in western Iran. Basic forest management and planning required appropriate quantitative and qualitative information. Two sampling methods were compared on the basis of the actual means of characteristics derived from the 100 % survey. In total, 37 sampling plots were systematically installed with a grid of 100 m × 100 m in the study area. Density, crown canopy, and basal area of the stands were measured. The 100 % survey showed that tree density above 12.5 cm diameter at breast height was 68.04 stem ha-1, basal area was 15.16 m2 ha-1 and crown canopy percentage was 35.71% ha-1. The values for the traits determined by the two sampling methods differed significantly (P = 0.05). When the time required for the methods was compared, transect sampling required less than systematic-random sampling. Therefore, the transect sampling method was the more economical method for the Zagros open forests. The transect sampling method was statistically defensible and practical for quantitating characteristics of the Zagros open forests.展开更多
Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random samp...Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random sampling(SRS)and LPM with geographical coordinates has produced promising results in simulation studies.In this simulation study we compared all these sampling methods to systematic sampling.The LPM samples were selected solely using the coordinates(LPMxy)or,in addition to that,auxiliary remote sensing-based forest variables(RS variables).We utilized field measurement data(NFI-field)and Multi-Source NFI(MS-NFI)maps as target data,and independent MS-NFI maps as auxiliary data.The designs were compared using relative efficiency(RE);a ratio of mean squared errors of the reference sampling design against the studied design.Applying a method in NFI also requires a proven estimator for the variance.Therefore,three different variance estimators were evaluated against the empirical variance of replications:1)an estimator corresponding to SRS;2)a Grafström-Schelin estimator repurposed for LPM;and 3)a Matérn estimator applied in the Finnish NFI for systematic sampling design.Results:The LPMxy was nearly comparable with the systematic design for the most target variables.The REs of the LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18,according to the studied target variable.The SRS estimator for variance was expectedly the most biased and conservative estimator.Similarly,the Grafström-Schelin estimator gave overestimates in the case of LPMxy.When the RS variables were utilized as auxiliary data,the Grafström-Schelin estimates tended to underestimate the empirical variance.In systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.Conclusions:LPM optimized for a specific variable tended to be more efficient than systematic sampling,but all of the considered LPM designs were less efficient than the systematic sampling design for some target variables.The Grafström-Schelin estimator could be used as such with LPMxy or instead of the Matérn estimator in systematic sampling.Further studies of the variance estimators are needed if other auxiliary variables are to be used in LPM.展开更多
Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed...Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed by McIntyre[1952.A method for unbiased selective sampling,using ranked sets.Australian Journal of Agricultural Research 3,385-390]as an effective way to estimate the pasture mean.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling(MERSS)is considered for the best linear unbiased estimators(BLUEs)for the simple linear regression model.The BLUEs for this model under MERSS are derived.The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling.展开更多
Variance is one of the most vital measures of dispersion widely employed in practical aspects.A commonly used approach for variance estimation is the traditional method of moments that is strongly influenced by the pr...Variance is one of the most vital measures of dispersion widely employed in practical aspects.A commonly used approach for variance estimation is the traditional method of moments that is strongly influenced by the presence of extreme values,and thus its results cannot be relied on.Finding momentum from Koyuncu’s recent work,the present paper focuses first on proposing two classes of variance estimators based on linear moments(L-moments),and then employing them with auxiliary data under double stratified sampling to introduce a new class of calibration variance estimators using important properties of L-moments(L-location,L-cv,L-variance).Three populations are taken into account to assess the efficiency of the new estimators.The first and second populations are concerned with artificial data,and the third populations is concerned with real data.The percentage relative efficiency of the proposed estimators over existing ones is evaluated.In the presence of extreme values,our findings depict the superiority and high efficiency of the proposed classes over traditional classes.Hence,when auxiliary data is available along with extreme values,the proposed classes of estimators may be implemented in an extensive variety of sampling surveys.展开更多
This paper proposes a new method for increasing the precision in survey sam- pling, i.e., a method combining sampling with prediction. The two cases where auxiliary information is or not available are considered. A nu...This paper proposes a new method for increasing the precision in survey sam- pling, i.e., a method combining sampling with prediction. The two cases where auxiliary information is or not available are considered. A numerical example is given.展开更多
This paper reveaed some problems of the forest samling investigation from application.and pointed out the defects. Determining sample size method was precisely put forward from formla's origin in simple random Sam...This paper reveaed some problems of the forest samling investigation from application.and pointed out the defects. Determining sample size method was precisely put forward from formla's origin in simple random Samling procedure In stratified random samgling, two cases were distinguished: the variances Sh2 are equal for all h and not all Sh2 are equal This method made the assertion of making confidence interval more reliable.展开更多
In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resa...In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resampling method under some conditions. The determination of sample size by bootstrap method is also discussed, and a simulation is made to verify the accuracy of the proposed method. The simulation results show that the sample size based on bootstrapping is smaller than that based on central limit theorem.展开更多
In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high ...In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high differentiations among the three strata in which this population could be classified. The rural population of Evros Prefecture (Greece) with criterion the mean altitude of settlements was classified in three strata, the mountainous, semi-mountainous and fiat population for the estimation of mean consumption of forest fuelwood for covering of heating and cooking needs in households of these three strata. The analysis of this methodology includes: (1) the determination of total size of sample for entire the rural population and its allocation to the various strata; (2) the investigation of effectiveness of stratification with the technique of analysis of variance (One-Way ANOVA); (3) the conduct of sampling research with the realization of face-to-face interviews in selected households and (4) the control of forms of the questionnaire and the analysis of data by using the statistical package for social sciences, SPSS for Windows. All data for the analysis of this methodology and its practical application were taken by the pilot sampling which was realized in each stratum. Relative paper was not found by the review of literature.展开更多
In this paper, we propose a software component under Windows that generates pseudo random numbers using RDS (Refined Descriptive Sampling) as required by the simulation. RDS is regarded as the best sampling method a...In this paper, we propose a software component under Windows that generates pseudo random numbers using RDS (Refined Descriptive Sampling) as required by the simulation. RDS is regarded as the best sampling method as shown in the literature. In order to validate the proposed component, its implementation is proposed on approximating integrals. The simulation results from RDS using "RDSRnd" generator were compared to those obtained using the generator "Rnd" included in the Pascal programming language under Windows. The best results are given by the proposed software component.展开更多
In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by ...In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.展开更多
Srivastava and Jhajj [ 1 6] proposed a class of estimators for estimating population variance using multi auxiliary variables in simple random sampling and they utilized the means and variances of auxiliary variables....Srivastava and Jhajj [ 1 6] proposed a class of estimators for estimating population variance using multi auxiliary variables in simple random sampling and they utilized the means and variances of auxiliary variables. In this paper, we adapted this class and motivated by Searle [13], and we suggested more generalized class of estimators for estimating the population variance in simple random sampling. The expressions for the mean square error of proposed class have been derived in general form. Besides obtaining the minimized MSE of the proposed and adapted class, it is shown that the adapted classis the special case of the proposed class. Moreover, these theoretical findings are supported by an empirical study of original data.展开更多
In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function...In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function based on multiplicative bias correction is derived with the aid of a super population model. Most studies have concentrated on kernel smoothers in the estimation of regression functions. This technique has also been applied to various methods of non-parametric estimation of the finite population quantile already under review. A major problem with the use of nonparametric kernel-based regression over a finite interval, such as the estimation of finite population quantities, is bias at boundary points. By correcting the boundary problems associated with previous model-based estimators, the multiplicative bias corrected estimator produced better results in estimating the finite population quantile function. Furthermore, the asymptotic behavior of the proposed estimators </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> presented</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is observed that the estimator is asymptotically unbiased and statistically consistent when certain conditions are satisfied. The simulation results show that the suggested estimator is quite well in terms of relative bias, mean squared error, and relative root mean error. As a result, the multiplicative bias corrected estimator is strongly suggested for survey sampling estimation of the finite population quantile function.展开更多
Traditional models for semantic segmentation in point clouds primarily focus on smaller scales.However,in real-world applications,point clouds often exhibit larger scales,leading to heavy computational and memory requ...Traditional models for semantic segmentation in point clouds primarily focus on smaller scales.However,in real-world applications,point clouds often exhibit larger scales,leading to heavy computational and memory requirements.The key to handling large-scale point clouds lies in leveraging random sampling,which offers higher computational efficiency and lower memory consumption compared to other sampling methods.Nevertheless,the use of random sampling can potentially result in the loss of crucial points during the encoding stage.To address these issues,this paper proposes cross-fusion self-attention network(CFSA-Net),a lightweight and efficient network architecture specifically designed for directly processing large-scale point clouds.At the core of this network is the incorporation of random sampling alongside a local feature extraction module based on cross-fusion self-attention(CFSA).This module effectively integrates long-range contextual dependencies between points by employing hierarchical position encoding(HPC).Furthermore,it enhances the interaction between each point’s coordinates and feature information through cross-fusion self-attention pooling,enabling the acquisition of more comprehensive geometric information.Finally,a residual optimization(RO)structure is introduced to extend the receptive field of individual points by stacking hierarchical position encoding and cross-fusion self-attention pooling,thereby reducing the impact of information loss caused by random sampling.Experimental results on the Stanford Large-Scale 3D Indoor Spaces(S3DIS),Semantic3D,and SemanticKITTI datasets demonstrate the superiority of this algorithm over advanced approaches such as RandLA-Net and KPConv.These findings underscore the excellent performance of CFSA-Net in large-scale 3D semantic segmentation.展开更多
Image matching refers to the process of matching two or more images obtained at different time,different sensors or different conditions through a large number of feature points in the image.At present,image matching ...Image matching refers to the process of matching two or more images obtained at different time,different sensors or different conditions through a large number of feature points in the image.At present,image matching is widely used in target recognition and tracking,indoor positioning and navigation.Local features missing,however,often occurs in color images taken in dark light,making the extracted feature points greatly reduced in number,so as to affect image matching and even fail the target recognition.An unsharp masking(USM)based denoising model is established and a local adaptive enhancement algorithm is proposed to achieve feature point compensation by strengthening local features of the dark image in order to increase amount of image information effectively.Fast library for approximate nearest neighbors(FLANN)and random sample consensus(RANSAC)are image matching algorithms.Experimental results show that the number of effective feature points obtained by the proposed algorithm from images in dark light environment is increased,and the accuracy of image matching can be improved obviously.展开更多
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金supported by the National Key R&D Program of China(2020YFC2003102).
文摘Objective:To reveal the distribution characteristics and demographic factors of traditional Chinese medicine(TCM)constitution among elderly individuals in China.Methods: Elderly individuals from seven regions in China were selected as samples in this study using a multistage cluster random sampling method.The basic information questionnaire and Constitution in Chinese Medicine Questionnaire(Elderly Edition)were used.Descriptive statistical analysis,chi-squared tests,and binary logistic regression analysis were used.Results: The single balanced constitution(BC)accounted for 23.9%.The results of the major TCM constitution types showed that BC(43.2%)accounted for the largest proportion and unbalanced constitutions ranged from 0.9%to 15.7%.East China region(odds ratio[OR]=2.097;95%confidence interval[CI],1.912 to 2.301),married status(OR=1.341;95%CI,1.235 to 1.457),and managers(OR=1.254;95%CI,1.044 to 1.505)were significantly associated with BC.Age>70 years was associated with qi-deficiency constitution and blood stasis constitution(BSC).Female sex was significantly associated with yang-deficiency constitution(OR=1.646;95%CI,1.52 to 1.782).Southwest region was significantly associated with phlegm-dampness constitution(OR=1.809;95%CI,1.569 to 2.086).North China region was significantly associated with inherited special constitution(OR=2.521;95%CI,1.569 to 4.05).South China region(OR=2.741;95%CI,1.997 to 1.3.763),Central China region(OR=8.889;95%CI,6.676 to 11.835),senior middle school education(OR=2.442;95%CI,1.932 to 3.088),and managers(OR=1.804;95%CI,1.21 to 2.69)were significantly associated with BSC.Conclusions: This study defined the distribution characteristics and demographic factors of TCM constitution in the elderly population.Adjusting and improving unbalanced constitutions,which are correlated with diseases,can help promote healthy aging through the scientific management of these demographic factors.
基金the National Key R&D Program of China(2022YFF0604502).
文摘In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.
文摘Direct measurement of snow water equivalent(SWE)in snow-dominated mountainous areas is difficult,thus its prediction is essential for water resources management in such areas.In addition,because of nonlinear trend of snow spatial distribution and the multiple influencing factors concerning the SWE spatial distribution,statistical models are not usually able to present acceptable results.Therefore,applicable methods that are able to predict nonlinear trends are necessary.In this research,to predict SWE,the Sohrevard Watershed located in northwest of Iran was selected as the case study.Database was collected,and the required maps were derived.Snow depth(SD)at 150 points with two sampling patterns including systematic random sampling and Latin hypercube sampling(LHS),and snow density at 18 points were randomly measured,and then SWE was calculated.SWE was predicted using artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS)and regression methods.The results showed that the performance of ANN and ANFIS models with two sampling patterns were observed better than the regression method.Moreover,based on most of the efficiency criteria,the efficiency of ANN,ANFIS and regression methods under LHS pattern were observed higher than the systematic random sampling pattern.However,there were no significant differences between the two methods of ANN and ANFIS in SWE prediction.Data of both two sampling patterns had the highest sensitivity to the elevation.In addition,the LHS and the systematic random sampling patterns had the least sensitivity to the profile curvature and plan curvature,respectively.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .40 1 71 0 78) ,FundfromHongKongPolytechnicUniversity (No.1 .34 .970 9)andtheResearchGrantsCouncilofHongKongSAR (No .3 ZB40 ) .
文摘On the basis of the principles of simple random sampling, the statistical model of rate of disfigurement (RD) is put forward and described in detail. According to the definition of simple random sampling for the attribute data in GIS, the mean and variance of the RD are deduced as the characteristic value of the statistical model in order to explain the feasibility of the accuracy measurement of the attribute data in GIS by using the RD. Moreover, on the basis of the mean and variance of the RD, the quality assessment method for attribute data of vector maps during the data collecting is discussed. The RD spread graph is also drawn to see whether the quality of the attribute data is under control. The RD model can synthetically judge the quality of attribute data, which is different from other measurement coefficients that only discuss accuracy of classification.
基金The authors extend their appreciation to Deanship of Scientic Research at King Khalid University for funding this work through Research Groups Program under Grant No.R.G.P.2/68/41.I.M.A.and A.I.A.received the grant.
文摘This article proposes two new Ranked Set Sampling(RSS)designs for estimating the population parameters:Simple Z Ranked Set Sampling(SZRSS)and Generalized Z Ranked Set Sampling(GZRSS).These designs provide unbiased estimators for the mean of symmetric distributions.It is shown that for non-uniform symmetric distributions,the estimators of the mean under the suggested designs are more efcient than those obtained by RSS,Simple Random Sampling(SRS),extreme RSS and truncation based RSS designs.Also,the proposed RSS schemes outperform other RSS schemes and provide more efcient estimates than their competitors under imperfect rankings.The suggested mean estimators under perfect and imperfect rankings are more efcient than the linear regression estimator under SRS.Our proposed RSS designs are also extended to cover the estimation of the population median.Real data is used to examine wthe usefulness and efciency of our estimators.
文摘The main aim of this study was to evaluate methods for fixed area and distance sampling in the Zagros open forest area in western Iran. Basic forest management and planning required appropriate quantitative and qualitative information. Two sampling methods were compared on the basis of the actual means of characteristics derived from the 100 % survey. In total, 37 sampling plots were systematically installed with a grid of 100 m × 100 m in the study area. Density, crown canopy, and basal area of the stands were measured. The 100 % survey showed that tree density above 12.5 cm diameter at breast height was 68.04 stem ha-1, basal area was 15.16 m2 ha-1 and crown canopy percentage was 35.71% ha-1. The values for the traits determined by the two sampling methods differed significantly (P = 0.05). When the time required for the methods was compared, transect sampling required less than systematic-random sampling. Therefore, the transect sampling method was the more economical method for the Zagros open forests. The transect sampling method was statistically defensible and practical for quantitating characteristics of the Zagros open forests.
基金the Ministry of Agriculture and Forestry key project“Puuta liikkeelle ja uusia tuotteita metsästä”(“Wood on the move and new products from forest”)Academy of Finland(project numbers 295100 , 306875).
文摘Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random sampling(SRS)and LPM with geographical coordinates has produced promising results in simulation studies.In this simulation study we compared all these sampling methods to systematic sampling.The LPM samples were selected solely using the coordinates(LPMxy)or,in addition to that,auxiliary remote sensing-based forest variables(RS variables).We utilized field measurement data(NFI-field)and Multi-Source NFI(MS-NFI)maps as target data,and independent MS-NFI maps as auxiliary data.The designs were compared using relative efficiency(RE);a ratio of mean squared errors of the reference sampling design against the studied design.Applying a method in NFI also requires a proven estimator for the variance.Therefore,three different variance estimators were evaluated against the empirical variance of replications:1)an estimator corresponding to SRS;2)a Grafström-Schelin estimator repurposed for LPM;and 3)a Matérn estimator applied in the Finnish NFI for systematic sampling design.Results:The LPMxy was nearly comparable with the systematic design for the most target variables.The REs of the LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18,according to the studied target variable.The SRS estimator for variance was expectedly the most biased and conservative estimator.Similarly,the Grafström-Schelin estimator gave overestimates in the case of LPMxy.When the RS variables were utilized as auxiliary data,the Grafström-Schelin estimates tended to underestimate the empirical variance.In systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.Conclusions:LPM optimized for a specific variable tended to be more efficient than systematic sampling,but all of the considered LPM designs were less efficient than the systematic sampling design for some target variables.The Grafström-Schelin estimator could be used as such with LPMxy or instead of the Matérn estimator in systematic sampling.Further studies of the variance estimators are needed if other auxiliary variables are to be used in LPM.
基金Supported by the National Natural Science Foundation of China(11901236)the Scientific Research Fund of Hunan Provincial Science and Technology Department(2019JJ50479)+3 种基金the Scientific Research Fund of Hunan Provincial Education Department(18B322)the Winning Bid Project of Hunan Province for the 4th National Economic Census([2020]1)the Young Core Teacher Foundation of Hunan Province([2020]43)the Funda-mental Research Fund of Xiangxi Autonomous Prefecture(2018SF5026)。
文摘Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed by McIntyre[1952.A method for unbiased selective sampling,using ranked sets.Australian Journal of Agricultural Research 3,385-390]as an effective way to estimate the pasture mean.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling(MERSS)is considered for the best linear unbiased estimators(BLUEs)for the simple linear regression model.The BLUEs for this model under MERSS are derived.The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling.
基金The authors thank the Deanship of Scientific Research at King Khalid University,Kingdom of Saudi Arabia for funding this study through the research groups program under Project Number R.G.P.1/64/42.Ishfaq Ahmad and Ibrahim Mufrah Almanjahie received the grant.
文摘Variance is one of the most vital measures of dispersion widely employed in practical aspects.A commonly used approach for variance estimation is the traditional method of moments that is strongly influenced by the presence of extreme values,and thus its results cannot be relied on.Finding momentum from Koyuncu’s recent work,the present paper focuses first on proposing two classes of variance estimators based on linear moments(L-moments),and then employing them with auxiliary data under double stratified sampling to introduce a new class of calibration variance estimators using important properties of L-moments(L-location,L-cv,L-variance).Three populations are taken into account to assess the efficiency of the new estimators.The first and second populations are concerned with artificial data,and the third populations is concerned with real data.The percentage relative efficiency of the proposed estimators over existing ones is evaluated.In the presence of extreme values,our findings depict the superiority and high efficiency of the proposed classes over traditional classes.Hence,when auxiliary data is available along with extreme values,the proposed classes of estimators may be implemented in an extensive variety of sampling surveys.
基金Supported by the National Natural Science Foundation of China
文摘This paper proposes a new method for increasing the precision in survey sam- pling, i.e., a method combining sampling with prediction. The two cases where auxiliary information is or not available are considered. A numerical example is given.
文摘This paper reveaed some problems of the forest samling investigation from application.and pointed out the defects. Determining sample size method was precisely put forward from formla's origin in simple random Samling procedure In stratified random samgling, two cases were distinguished: the variances Sh2 are equal for all h and not all Sh2 are equal This method made the assertion of making confidence interval more reliable.
基金The Science Research Start-up Foundation for Young Teachers of Southwest Jiaotong University(No.2007Q091)
文摘In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resampling method under some conditions. The determination of sample size by bootstrap method is also discussed, and a simulation is made to verify the accuracy of the proposed method. The simulation results show that the sample size based on bootstrapping is smaller than that based on central limit theorem.
文摘In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high differentiations among the three strata in which this population could be classified. The rural population of Evros Prefecture (Greece) with criterion the mean altitude of settlements was classified in three strata, the mountainous, semi-mountainous and fiat population for the estimation of mean consumption of forest fuelwood for covering of heating and cooking needs in households of these three strata. The analysis of this methodology includes: (1) the determination of total size of sample for entire the rural population and its allocation to the various strata; (2) the investigation of effectiveness of stratification with the technique of analysis of variance (One-Way ANOVA); (3) the conduct of sampling research with the realization of face-to-face interviews in selected households and (4) the control of forms of the questionnaire and the analysis of data by using the statistical package for social sciences, SPSS for Windows. All data for the analysis of this methodology and its practical application were taken by the pilot sampling which was realized in each stratum. Relative paper was not found by the review of literature.
文摘In this paper, we propose a software component under Windows that generates pseudo random numbers using RDS (Refined Descriptive Sampling) as required by the simulation. RDS is regarded as the best sampling method as shown in the literature. In order to validate the proposed component, its implementation is proposed on approximating integrals. The simulation results from RDS using "RDSRnd" generator were compared to those obtained using the generator "Rnd" included in the Pascal programming language under Windows. The best results are given by the proposed software component.
文摘In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.
文摘Srivastava and Jhajj [ 1 6] proposed a class of estimators for estimating population variance using multi auxiliary variables in simple random sampling and they utilized the means and variances of auxiliary variables. In this paper, we adapted this class and motivated by Searle [13], and we suggested more generalized class of estimators for estimating the population variance in simple random sampling. The expressions for the mean square error of proposed class have been derived in general form. Besides obtaining the minimized MSE of the proposed and adapted class, it is shown that the adapted classis the special case of the proposed class. Moreover, these theoretical findings are supported by an empirical study of original data.
文摘In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function based on multiplicative bias correction is derived with the aid of a super population model. Most studies have concentrated on kernel smoothers in the estimation of regression functions. This technique has also been applied to various methods of non-parametric estimation of the finite population quantile already under review. A major problem with the use of nonparametric kernel-based regression over a finite interval, such as the estimation of finite population quantities, is bias at boundary points. By correcting the boundary problems associated with previous model-based estimators, the multiplicative bias corrected estimator produced better results in estimating the finite population quantile function. Furthermore, the asymptotic behavior of the proposed estimators </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> presented</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is observed that the estimator is asymptotically unbiased and statistically consistent when certain conditions are satisfied. The simulation results show that the suggested estimator is quite well in terms of relative bias, mean squared error, and relative root mean error. As a result, the multiplicative bias corrected estimator is strongly suggested for survey sampling estimation of the finite population quantile function.
基金funded by the National Natural Science Foundation of China Youth Project(61603127).
文摘Traditional models for semantic segmentation in point clouds primarily focus on smaller scales.However,in real-world applications,point clouds often exhibit larger scales,leading to heavy computational and memory requirements.The key to handling large-scale point clouds lies in leveraging random sampling,which offers higher computational efficiency and lower memory consumption compared to other sampling methods.Nevertheless,the use of random sampling can potentially result in the loss of crucial points during the encoding stage.To address these issues,this paper proposes cross-fusion self-attention network(CFSA-Net),a lightweight and efficient network architecture specifically designed for directly processing large-scale point clouds.At the core of this network is the incorporation of random sampling alongside a local feature extraction module based on cross-fusion self-attention(CFSA).This module effectively integrates long-range contextual dependencies between points by employing hierarchical position encoding(HPC).Furthermore,it enhances the interaction between each point’s coordinates and feature information through cross-fusion self-attention pooling,enabling the acquisition of more comprehensive geometric information.Finally,a residual optimization(RO)structure is introduced to extend the receptive field of individual points by stacking hierarchical position encoding and cross-fusion self-attention pooling,thereby reducing the impact of information loss caused by random sampling.Experimental results on the Stanford Large-Scale 3D Indoor Spaces(S3DIS),Semantic3D,and SemanticKITTI datasets demonstrate the superiority of this algorithm over advanced approaches such as RandLA-Net and KPConv.These findings underscore the excellent performance of CFSA-Net in large-scale 3D semantic segmentation.
基金Supported by the National Natural Science Foundation of China(No.61771186)the Heilongjiang Provincial Natural Science Foundation of China(No.YQ2020F012)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2017125).
文摘Image matching refers to the process of matching two or more images obtained at different time,different sensors or different conditions through a large number of feature points in the image.At present,image matching is widely used in target recognition and tracking,indoor positioning and navigation.Local features missing,however,often occurs in color images taken in dark light,making the extracted feature points greatly reduced in number,so as to affect image matching and even fail the target recognition.An unsharp masking(USM)based denoising model is established and a local adaptive enhancement algorithm is proposed to achieve feature point compensation by strengthening local features of the dark image in order to increase amount of image information effectively.Fast library for approximate nearest neighbors(FLANN)and random sample consensus(RANSAC)are image matching algorithms.Experimental results show that the number of effective feature points obtained by the proposed algorithm from images in dark light environment is increased,and the accuracy of image matching can be improved obviously.