This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectiv...This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectively,are real-valued,dependent and heavy-tailed,while the random weights{Θi,θi;i∈N}are nonnegative and arbitrarily dependent,but the three sequences{X_(i);i∈N},{Y_(i);i∈N}and{Θ_(i),θ_(i);i∈N}are mutually independent.Under two types of weak dependence assumptions on the heavy-tailed primary random variables and some mild moment conditions on the random weights,we establish some(uniformly)asymptotic formulas for the joint tail probability of the two randomly weighted sums,expressing the insensitivity with respect to the underlying weak dependence structures.As applications,we consider both discrete-time and continuous-time insurance risk models,and obtain some asymptotic results for ruin probabilities.展开更多
Several authors have studied the uniform estimate for the tail probabilities of randomly weighted sumsa.ud their maxima. In this paper, we generalize their work to the situation thatis a sequence of upper tail asympto...Several authors have studied the uniform estimate for the tail probabilities of randomly weighted sumsa.ud their maxima. In this paper, we generalize their work to the situation thatis a sequence of upper tail asymptotically independent random variables with common distribution from the is a sequence of nonnegative random variables, independent of and satisfying some regular conditions. Moreover. no additional assumption is required on the dependence structureof {θi,i≥ 1).展开更多
The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are...The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group.展开更多
The author obtains that the asymptotic relations ■ hold as x→∞, where the random weights θ1,···, θn are bounded away both from 0 and from∞with no dependency assumptions, independent of the primary...The author obtains that the asymptotic relations ■ hold as x→∞, where the random weights θ1,···, θn are bounded away both from 0 and from∞with no dependency assumptions, independent of the primary random variables X1,···, Xn which have a certain kind of dependence structure and follow non-identically subexponential distributions. In particular, the asymptotic relations remain true when X1,···, Xn jointly follow a pairwise Sarmanov distribution.展开更多
This paper investigates the asymptotic behavior of tail probability of randomly weighted sums of dependent and real-valued random variables with dominated variation, where the weights form another sequence of nonnegat...This paper investigates the asymptotic behavior of tail probability of randomly weighted sums of dependent and real-valued random variables with dominated variation, where the weights form another sequence of nonnegative random variables. The result we obtain extends the corresponding result of Wang and Tang.展开更多
For random variables and random weights satisfying Marcinkiewicz-Zygmund and Rosenthal type moment inequalities, we establish complete convergence results for randomly weighted sums of the random variables. Our result...For random variables and random weights satisfying Marcinkiewicz-Zygmund and Rosenthal type moment inequalities, we establish complete convergence results for randomly weighted sums of the random variables. Our results generalize those of(Thanh et al. SIAM J. Control Optim., 49,106–124(2011), Han and Xiang J. Ineq. Appl., 2016, 313(2016), Li et al. J. Ineq. Appl., 2017, 182(2017), and Wang et al. Statistics, 52, 503–518(2018).)展开更多
Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of a...Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.展开更多
The authors establish the approximations to the distribution of M-estimates in a linear model by the bootstrap and the linear representation of bootstrap M-estimation, and prove that the approximation is valid in prob...The authors establish the approximations to the distribution of M-estimates in a linear model by the bootstrap and the linear representation of bootstrap M-estimation, and prove that the approximation is valid in probability 1. A simulation is made to show the effects of bootstrap approximation, randomly weighted approximation and normal approximation.展开更多
For left censored response longitudinal data, we propose a composite quantile regression estimator(CQR) of regression parameter. Statistical properties such as consistency and asymptotic normality of CQR are studied...For left censored response longitudinal data, we propose a composite quantile regression estimator(CQR) of regression parameter. Statistical properties such as consistency and asymptotic normality of CQR are studied under relaxable assumptions of correlation structure of error terms. The performance of CQR is investigated via simulation studies and a real dataset analysis.展开更多
基金supported by the Humanities and Social Sciences Foundation of the Ministry of Education of China(Grant No.20YJA910006)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201396)+2 种基金supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(Grant No.KYCX211939)supported by the Research Grants Council of Hong KongChina(Grant No.HKU17329216)。
文摘This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectively,are real-valued,dependent and heavy-tailed,while the random weights{Θi,θi;i∈N}are nonnegative and arbitrarily dependent,but the three sequences{X_(i);i∈N},{Y_(i);i∈N}and{Θ_(i),θ_(i);i∈N}are mutually independent.Under two types of weak dependence assumptions on the heavy-tailed primary random variables and some mild moment conditions on the random weights,we establish some(uniformly)asymptotic formulas for the joint tail probability of the two randomly weighted sums,expressing the insensitivity with respect to the underlying weak dependence structures.As applications,we consider both discrete-time and continuous-time insurance risk models,and obtain some asymptotic results for ruin probabilities.
基金Supported by the National Natural Science Foundation of China(No.11071045,No.11171179,No.11201080,No.11301391)the Research Fund for the Doctoral Program of Higher Education of China(No.20133705110002)
文摘Several authors have studied the uniform estimate for the tail probabilities of randomly weighted sumsa.ud their maxima. In this paper, we generalize their work to the situation thatis a sequence of upper tail asymptotically independent random variables with common distribution from the is a sequence of nonnegative random variables, independent of and satisfying some regular conditions. Moreover. no additional assumption is required on the dependence structureof {θi,i≥ 1).
文摘The authors consider the partially linear model relating a response Y to predictors (x, T) with a mean function x^Tβ0 + g(T) when the x's are measured with an additive error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized randomly weighted least absolute deviation (LAD for short) method. The resulting estimator of the unknown vector 30 is shown to be consistent and asymptotically normal. In addition, the results facilitate the construction of confidence regions and the hypothesis testing for the unknown parameters. Extensive simulations are reported, showing that the proposed method works well in practical settings. The proposed methods are also applied to a data set from the study of an AIDS clinical trial group.
基金supported by the National Natural Science Foundation of China(No.11401415).
文摘The author obtains that the asymptotic relations ■ hold as x→∞, where the random weights θ1,···, θn are bounded away both from 0 and from∞with no dependency assumptions, independent of the primary random variables X1,···, Xn which have a certain kind of dependence structure and follow non-identically subexponential distributions. In particular, the asymptotic relations remain true when X1,···, Xn jointly follow a pairwise Sarmanov distribution.
基金Supported by the National Natural Science Foundation of China(Grant No.10802061)the Research Project of Xi'an Institute of Statistics(Grant No.07JD16)
文摘This paper investigates the asymptotic behavior of tail probability of randomly weighted sums of dependent and real-valued random variables with dominated variation, where the weights form another sequence of nonnegative random variables. The result we obtain extends the corresponding result of Wang and Tang.
基金The research of Pingyan Chen is supported by the National Natural Science Foundation of China(Grant No.71471075)the research of Soo Hak Sung is supported by the Pai Chai University research grant in 2020。
文摘For random variables and random weights satisfying Marcinkiewicz-Zygmund and Rosenthal type moment inequalities, we establish complete convergence results for randomly weighted sums of the random variables. Our results generalize those of(Thanh et al. SIAM J. Control Optim., 49,106–124(2011), Han and Xiang J. Ineq. Appl., 2016, 313(2016), Li et al. J. Ineq. Appl., 2017, 182(2017), and Wang et al. Statistics, 52, 503–518(2018).)
基金supported by National Natural Science Foundation of China (Grant No. 10471136)PhD Program Foundation of the Ministry of Education of ChinaSpecial Foundations of the Chinese Academy of Sciences and University of Science and Technology of China
文摘Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.
基金supported by Fund of 211 Program of SHUFEFund of Educational Committee of Shanghai
文摘The authors establish the approximations to the distribution of M-estimates in a linear model by the bootstrap and the linear representation of bootstrap M-estimation, and prove that the approximation is valid in probability 1. A simulation is made to show the effects of bootstrap approximation, randomly weighted approximation and normal approximation.
基金Supported in part by the National Natural Science Foundation of China under(Grant No.11601097 and 11471302)the State Key Program of National Natural Science of China(Grant No.11231010)
文摘For left censored response longitudinal data, we propose a composite quantile regression estimator(CQR) of regression parameter. Statistical properties such as consistency and asymptotic normality of CQR are studied under relaxable assumptions of correlation structure of error terms. The performance of CQR is investigated via simulation studies and a real dataset analysis.