A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifier...A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifiers with gain boost structure, and biasing all the cells with the same voltage bias source, which requires careful layout design and large capacitors. In addition,capacitor array DAC is also applied to reduce power consumption,and low threshold voltage MOS transistors are used to achieve a large signal processing range. The ADC was implemented in a 0.18μm 4M-1 P CMOS process,and the experimental results indicate that it consumes only 7mW, which is much less than general pipeline ADCs. The ADC was used in a 300000 pixels CMOS image sensor.展开更多
A long-term analysis of signal-in-space range error (SISRE) is presented for all healthy Galileo satellites, and the first pair of full operational capability satellites in wrong elliptical orbits. Both orbit and cloc...A long-term analysis of signal-in-space range error (SISRE) is presented for all healthy Galileo satellites, and the first pair of full operational capability satellites in wrong elliptical orbits. Both orbit and clock errors for Galileo show an obvious convergence trend over time. The annual statistical analyses show that the average root mean squares (RMSs) of SISRE for the Galileo constellation are 0.58 m (2015), 0.29 m (2016), 0.23 m (2017), and 0.22 m (2018). Currently, the accuracy of the Galileo signal-in-space is superior to that of the global positioning system (GPS) Block IIF (0.35 m). In addition, the orbit error accounts for the majority of Galileo SISRE, while the clock error accounts for approximately one-third of SISRE due to the high stability of the onboard atomic clock. Single point positioning results show that Galileo achieves an accuracy of 2-3 m, which is comparable to that of GPS despite the smaller number of satellites and worse geometry. Interestingly, the vertical accuracy of Galileo, which uses the NeQuick ionospheric model, is higher than that of GPS. Positioning with single frequency E1 and E5 show a higher precision than E5a and E5b signals. Regarding precise point positioning (PPP), the results indicate that a comparable positioning accuracy can be achieved among different stations with the current Galileo constellation. For static PPP, the RMS values of Galileo-only solutions are within 1 cm horizontally, and the vertical RMSs are mostly within 2 cm horizontally. For kinematic PPP, the RMSs of Galileo-only solutions are mostly within 4 cm horizontally and 6 cm vertically.展开更多
Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signa...Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signals with multiple frequencies are produced simultaneously;however,due to the limited bandwidth of a single-frequency transducer,the received PA signals with specific frequencies may be missing,leading to a low imaging quality.Methods:In contrast to our previous work,the proposed system has a compact volume as well as specific selection of the detection center frequency of the transducer,which can provide a comprehensive range for the detection of PA signals.In this study,a series of numerical simulation and phantom experiments were performed to validate the efficacy of the developed PACT system.Results:The images generated by our system combined the advantages of both high resolution and ideal brightness/contrast.Conclusion:The interchangeability of transducers with different frequencies provides potential for clinical deployment under the circumstance where a single frequency transducer cannot perform well.展开更多
In this paper the properties of space- time correlation function of the noise field of moving source in layered statistic inhomogeneous medium are studied and the effects of random fluctuating boundary are considered ...In this paper the properties of space- time correlation function of the noise field of moving source in layered statistic inhomogeneous medium are studied and the effects of random fluctuating boundary are considered as well.It has been shown, theoretically and experimentally, multi-path propergating effects cause the dispersion of the correlation function and fluctuations of the medium refraction index and the boundary cause the fluctuation of it.The effect of the movement of the noise source on the output of real- time correlator is equivalent to a low- pass filter added the drift of space- time correlation function.These properties of the correlation function cause grave degradation of the signal processing gain of noise ranging sonar system.The fluctuating and the distortion of conrrelation function made it difficult to realize the noise ranging.So in this paper, a method of space correlation ranging by a linear array of four points with short separation and long span and a technigue of dual- correlation signal processing are presented. By this, the influences of previously mentioned factors are greatly overcomed.Futhermore, for the long period and great delay fluctuation of the dual- correlation function output caused by internal wave, a method of limited memory Quasi- Kalman filtering is developed and the effective accurate ranging and tracing of noise ranging sonar are able to be tralized finally.展开更多
A novel architecture of a pipelined redundant-signed-digit analog to digital converter(RSD-ADC) is presented featuring a high signal to noise ratio(SNR), spurious free dynamic range(SFDR) and signal to noise plu...A novel architecture of a pipelined redundant-signed-digit analog to digital converter(RSD-ADC) is presented featuring a high signal to noise ratio(SNR), spurious free dynamic range(SFDR) and signal to noise plus distortion(SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC(residue amplification circuit)stages. With the proposed architecture of ADC, SNDR obtained is 85.89 d B, SNR is 85.9 d B and SFDR obtained is 102.8 d B at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.展开更多
文摘A low-power-consumption 9bit 10MS/s pipeline ADC,used in a CMOS image sensor,is proposed. In the design, the decrease of power consumption is achieved by applying low-power-consumption and large-output-swing amplifiers with gain boost structure, and biasing all the cells with the same voltage bias source, which requires careful layout design and large capacitors. In addition,capacitor array DAC is also applied to reduce power consumption,and low threshold voltage MOS transistors are used to achieve a large signal processing range. The ADC was implemented in a 0.18μm 4M-1 P CMOS process,and the experimental results indicate that it consumes only 7mW, which is much less than general pipeline ADCs. The ADC was used in a 300000 pixels CMOS image sensor.
基金the National Natural Science Foundation of China(No.41774034)the National Key Research and Development Program of China(No.2016YFB0501803,No.2017YFB0503402).
文摘A long-term analysis of signal-in-space range error (SISRE) is presented for all healthy Galileo satellites, and the first pair of full operational capability satellites in wrong elliptical orbits. Both orbit and clock errors for Galileo show an obvious convergence trend over time. The annual statistical analyses show that the average root mean squares (RMSs) of SISRE for the Galileo constellation are 0.58 m (2015), 0.29 m (2016), 0.23 m (2017), and 0.22 m (2018). Currently, the accuracy of the Galileo signal-in-space is superior to that of the global positioning system (GPS) Block IIF (0.35 m). In addition, the orbit error accounts for the majority of Galileo SISRE, while the clock error accounts for approximately one-third of SISRE due to the high stability of the onboard atomic clock. Single point positioning results show that Galileo achieves an accuracy of 2-3 m, which is comparable to that of GPS despite the smaller number of satellites and worse geometry. Interestingly, the vertical accuracy of Galileo, which uses the NeQuick ionospheric model, is higher than that of GPS. Positioning with single frequency E1 and E5 show a higher precision than E5a and E5b signals. Regarding precise point positioning (PPP), the results indicate that a comparable positioning accuracy can be achieved among different stations with the current Galileo constellation. For static PPP, the RMS values of Galileo-only solutions are within 1 cm horizontally, and the vertical RMSs are mostly within 2 cm horizontally. For kinematic PPP, the RMSs of Galileo-only solutions are mostly within 4 cm horizontally and 6 cm vertically.
基金supported by National Key R&D program of China(No.2019YFB1312400)Hong Kong Health and Medical Research Fund(HMRF)(No.06171066)CUHK-Direct(No.134997202).
文摘Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signals with multiple frequencies are produced simultaneously;however,due to the limited bandwidth of a single-frequency transducer,the received PA signals with specific frequencies may be missing,leading to a low imaging quality.Methods:In contrast to our previous work,the proposed system has a compact volume as well as specific selection of the detection center frequency of the transducer,which can provide a comprehensive range for the detection of PA signals.In this study,a series of numerical simulation and phantom experiments were performed to validate the efficacy of the developed PACT system.Results:The images generated by our system combined the advantages of both high resolution and ideal brightness/contrast.Conclusion:The interchangeability of transducers with different frequencies provides potential for clinical deployment under the circumstance where a single frequency transducer cannot perform well.
文摘In this paper the properties of space- time correlation function of the noise field of moving source in layered statistic inhomogeneous medium are studied and the effects of random fluctuating boundary are considered as well.It has been shown, theoretically and experimentally, multi-path propergating effects cause the dispersion of the correlation function and fluctuations of the medium refraction index and the boundary cause the fluctuation of it.The effect of the movement of the noise source on the output of real- time correlator is equivalent to a low- pass filter added the drift of space- time correlation function.These properties of the correlation function cause grave degradation of the signal processing gain of noise ranging sonar system.The fluctuating and the distortion of conrrelation function made it difficult to realize the noise ranging.So in this paper, a method of space correlation ranging by a linear array of four points with short separation and long span and a technigue of dual- correlation signal processing are presented. By this, the influences of previously mentioned factors are greatly overcomed.Futhermore, for the long period and great delay fluctuation of the dual- correlation function output caused by internal wave, a method of limited memory Quasi- Kalman filtering is developed and the effective accurate ranging and tracing of noise ranging sonar are able to be tralized finally.
文摘A novel architecture of a pipelined redundant-signed-digit analog to digital converter(RSD-ADC) is presented featuring a high signal to noise ratio(SNR), spurious free dynamic range(SFDR) and signal to noise plus distortion(SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC(residue amplification circuit)stages. With the proposed architecture of ADC, SNDR obtained is 85.89 d B, SNR is 85.9 d B and SFDR obtained is 102.8 d B at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.