In order to improve the target location accuracy of unmanned aerial vehicle(UAV),a novel target location method using multiple observations is proposed.Firstly,the camera intrinsic parameters are calibrated.Then,the w...In order to improve the target location accuracy of unmanned aerial vehicle(UAV),a novel target location method using multiple observations is proposed.Firstly,the camera intrinsic parameters are calibrated.Then,the weighted least squares estimation is used to improve the localization precision because the traditional crossover method is vulnerable to noise and has low precision.By repeatedly measuring the same target point,a nonlinear observation equation is established and then covered to linear equations using Taylor expansion.The weighted matrix is obtained according to the height of the measurement point and the camera optic axis pointing angle,and then the weighted least squares estimation is used to calculate the target position iteratively.Finally,the effectiveness and robustness of this method is verified by numerical simulation and flight test.The results show that this method can effectively improve the precision of target location.展开更多
This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of...This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of a thin cylindrical target making use of the high resolution of wide band FMCW signal and the spectrum characteristics of the target echo. Formulae are derived for target location and its length estimation being independent of the transmitter position. System performances are simulated with the proposed algorithm and the results are given for various situations.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured ...the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured object and take image of targets to determinethe object coordinate. The subpixel location of target image plays animportant role in high accuracy 3-D coordinate measuring procedure.In this paper, some subpixel location methods are reviewed and somefactors which affect location precision are analyzed.展开更多
The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This...The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.展开更多
Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location ...Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.展开更多
基金supported by the National Natural Science Foundation of China(No.61601222)State Key Laboratory of Satellite Navigation System and Equipment Technology(No.EX166840046)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20160789)China Postdoctoral Science Foundation Funded Project(No.2018M632303)
文摘In order to improve the target location accuracy of unmanned aerial vehicle(UAV),a novel target location method using multiple observations is proposed.Firstly,the camera intrinsic parameters are calibrated.Then,the weighted least squares estimation is used to improve the localization precision because the traditional crossover method is vulnerable to noise and has low precision.By repeatedly measuring the same target point,a nonlinear observation equation is established and then covered to linear equations using Taylor expansion.The weighted matrix is obtained according to the height of the measurement point and the camera optic axis pointing angle,and then the weighted least squares estimation is used to calculate the target position iteratively.Finally,the effectiveness and robustness of this method is verified by numerical simulation and flight test.The results show that this method can effectively improve the precision of target location.
文摘This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of a thin cylindrical target making use of the high resolution of wide band FMCW signal and the spectrum characteristics of the target echo. Formulae are derived for target location and its length estimation being independent of the transmitter position. System performances are simulated with the proposed algorithm and the results are given for various situations.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
文摘the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured object and take image of targets to determinethe object coordinate. The subpixel location of target image plays animportant role in high accuracy 3-D coordinate measuring procedure.In this paper, some subpixel location methods are reviewed and somefactors which affect location precision are analyzed.
文摘The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.
文摘Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.