As a prerequisite for effective prognostics, the goodness of the features affects the complexity of the prognostic methods. Comparing to features quality evaluation in diagnostics, features evaluation for prognostics ...As a prerequisite for effective prognostics, the goodness of the features affects the complexity of the prognostic methods. Comparing to features quality evaluation in diagnostics, features evaluation for prognostics is a new problem. Normally, the monotonic tendency of feature series can be used as the visual representation of equipment damage cumulation so that forecasting its future health states is easy to implement. Through introducing the concept of ranking mutual information in ordinal case, a monotonicity evaluation method of monitoring feature series is proposed. Finally, this method is verified by the simulating feature series and the results verify its effectivity. For the specific application in industry, the evaluation results can be used as the standard for selecting prognostic feature.展开更多
In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy sampl...In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy samples and do not work in real-world applications.In this work,we propose a new measure of feature quality, called rank mutual information.Then,we design an ordinal decision tree(REOT) construction technique based on rank mutual information.The theoretic and experimental analysis shows that the proposed algorithm is effective.展开更多
基金the Test Technique Research Project(No.2014SZJY3101)
文摘As a prerequisite for effective prognostics, the goodness of the features affects the complexity of the prognostic methods. Comparing to features quality evaluation in diagnostics, features evaluation for prognostics is a new problem. Normally, the monotonic tendency of feature series can be used as the visual representation of equipment damage cumulation so that forecasting its future health states is easy to implement. Through introducing the concept of ranking mutual information in ordinal case, a monotonicity evaluation method of monitoring feature series is proposed. Finally, this method is verified by the simulating feature series and the results verify its effectivity. For the specific application in industry, the evaluation results can be used as the standard for selecting prognostic feature.
基金supported by National Natural Science Foundation of China under Grant 60703013 and 10978011Key Program of National Natural Science Foundation of China under Grant 60932008+1 种基金National Science Fund for Distinguished Young Scholars under Grant 50925625China Postdoctoral Science Foundation.
文摘In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy samples and do not work in real-world applications.In this work,we propose a new measure of feature quality, called rank mutual information.Then,we design an ordinal decision tree(REOT) construction technique based on rank mutual information.The theoretic and experimental analysis shows that the proposed algorithm is effective.