The aim of this study was to evaluate the growth of rape (Brassica napus L.) seedlings under different light intensities to select appropriate conditions for cultivation in an indoor system. Seedlings were grown und...The aim of this study was to evaluate the growth of rape (Brassica napus L.) seedlings under different light intensities to select appropriate conditions for cultivation in an indoor system. Seedlings were grown under different light intensities of red and blue light provided by light-emitting diodes (LEDs) and their self-adjustment ability and changes in leaf microstructure were evaluated. Light was supplied by red LEDs with peak wavelengths of 630 (R1) and 660 nm (R2) and by blue LEDs (B) with a peak wavelength of 445 nm (the light intensity ratio of R1:R2:B was 3:3:2), at intensities of 400 (R1R2B400), 300 (R1R2B300), and 200 μmol m-2 s-1 (R1R2B200). Natural solar light served as the control (C). Plant height, stem diameter, root length, leaf area, and dry weight of rape seedlings gradually increased with increasing light intensity. The seedlings in the R1R2B400 treatment grew more vigorously, while those in the R1R2B200 treatment were weaker. The photosynthetic pigment contents did not differ significantly between the R1R2B400 treatment and C, but were significantly lower in the R1R2B300 and R1R2B200 treatments. The highest intercellular CO2concentration, stomatal conductance, and transpiration rate were in the R1R2B300 treatment. The highest photosynthetic rate was in the R1R2B400 treatment, and was related to more compact leaves, thicker and tidier palisade and spongy tissues, and well-developed chloroplasts. In contrast, the seedlings in the R1R2B200 treatment had disordered mesophyll cells, round chloroplasts, and fractured and fuzzy grana lamellae, all of which inhibited plant growth. In conclusion, the seedlings in the R1R2B400 treatment had well-developed leaves, which favored photosynthesis. Compared with the light intensities below 300 μmol m-2 s-1, the light intensity of 400 μmol m-2 s-1 provided by a cembination of red and blue LEDs was beneficial for cultivating strong and healthy rape seedlings in an artificial system.展开更多
Effect of cerium (Ce^3+) on growth and photosynthesis in rape seedlings exposed to two levels of ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied with hydroponics under laboratory conditions. The growth o...Effect of cerium (Ce^3+) on growth and photosynthesis in rape seedlings exposed to two levels of ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied with hydroponics under laboratory conditions. The growth of rape seedlings exposed to two levels of UV-B irradiation (0.15 and 0.35 W· m^-2/T2) was both heavily restrained. The aboveground growth indices including stem (plant) height, leaf number, leaf area, leaf fresh/dry weight and stem fresh/dry weight were obviously decreased by 13.2% - 44.1% (T1) and 21 .4% - 49.3% (T2). Compared to CK, and except active absorption area of roots, the belowground indices main root length, root volume and fresh/dry weight by 14.1% -35.6% (T1) and 20.3% - 42.6% (T2), respectively. For Ce + UV-B treatments, the aboveground and belowground growth indices were decreased by 4.1% - 23.6%, 5.2% -23.3% (Ce+T1) and 10.8% -28.4%, 7.0% -27.8% (Ce +T2), lower than those of UV-B treatments mentioned above. These results show that Ce has protective effect on plant against injury of UV-B radiation. Furthermore, the protective effect of Ce on seedlings exposed to T1 level of UV-B radiation is superior to T2 level. Chlorophyll content, net photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency in UV-B treatments decrease dramatically, whereas intercellular CO2 concentration increases. Although these indices in Ce + UV-B treatments decrease compared with those of CK, the decrease in Ce + UV-B treatments are lower than those in UV-B treatment. This phenomenon indicates that the ecophysiological protective effect of Ce is based on improving photosynthesis in plants. The dynamic curves of photosynthesis indices show that the course of light-repair is shortened and the injury to rape seedlings by UV-B radiation stress is alleviated by Ce.展开更多
Effects of cerium (Ce^3+ ) on membranous protective enzymes in rape seedlings exposed to two levels of enhanced uhraviolet-B radiation (UV-B, 280 - 320 nm) were studied by hydroponics in the laboratory. The resul...Effects of cerium (Ce^3+ ) on membranous protective enzymes in rape seedlings exposed to two levels of enhanced uhraviolet-B radiation (UV-B, 280 - 320 nm) were studied by hydroponics in the laboratory. The results show that the chlorophyll content decreases and membrane permeability increases in the leaves under UV-B irradiation with an intensity of 0.15 and 0.35 W·m^-2. The activities of SOD, CAT and POD are first increased and then decreased in leaves exposed to a low level of UV-B radiation. POD activity in leaves exposed to a high level of UV-B radiation is enhanced constantly. The sensitivities of these enzymes to UV-B radiation are SOD 〉 CAT 〉 POD. The injury by UV-B radiation on the functions of protective enzymes is lightened, their ability to scavenge radicals is improved, and the membrane permeability is maintained by Ce. Furthermore, the protective effect of cerium is more obvious in plants exposed to low levels of UV-B radiation than to high levels of it. Accordingly, all results prove that the protective effect of Ce on plants under UV-B radiation is realized through the protective system of plants.展开更多
Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were ...Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were investigated by the hydroponic culture. The results of static experiment indicated that the tolerance of rape seedling to single stress(AR or UV-B) is stronger than that to dual stresses(AR + UV-B). Furthermore, the dual stresses had additive effect on catalase activity, and a synergistic effect on MDA content, net photosynthesis rate, water use efficiency as well as intercellular CO2 concentration. Meanwhile, it has an independent effect on chlorophyll content, stomatal conductance, and transpiration rate as well as membrane permeability. During 64 h restoration course, the dynamic change in the curves of physiological and biochemical indices were not identical, and none of them show a simple linear variation. According to the static and dynamic experiments, it was found that a responsive sequence of catalase activity, membrane permeability, MDA content and photosynthetic characteristics to the above-mentioned stresses was as follows: AR + UV-B 〉 UV-B 〉 AR.展开更多
Seed treatments with the neonicotinoid insecticides imidacloprid and thiamethoxam were evaluated to determine whether the chemicals at effective concentrations for aphid control would influence the germination and ear...Seed treatments with the neonicotinoid insecticides imidacloprid and thiamethoxam were evaluated to determine whether the chemicals at effective concentrations for aphid control would influence the germination and early growth of oilseed rape,Brassica napus.Treatment with imidacloprid or thiamethoxam did not affect the cumulative germination rate,but significantly inhibited establishment potential by suppressing root system development in the cotyledon stage.However,these alterations in seedling development in the thiamethoxam-treated seeds appeared not to be detrimental as leaves developed;in contrast,for the seedlings with imidacloprid as seed treatment agent,a significantly decreased shoot/root ratio was still evident at the late two-leaf stage.After two leaves developed,chlorophyll content per leaf in the thiamethoxam treatment was significantly higher than that of the control,while chlorophyll content per leaf in the imidacloprid treatment remained close to that in the control.Most other parameters,i.e.,height,leaf area,weight of stem,leaf or root,and other growth indexes,between the treatments and the control showed no significant difference.Additionally,it was found that storage time of the treated seeds had a significant effect on cumulative germination rate.Treatment 30 d before planting significantly reduced germination relative to that of the control.All of the plants treated with neonicotinoids were shown to have significant anti-aphid characteristics that persisted until the end of the trial.展开更多
Considering both high efficiency and high seedling standing quality is a significant objective for crop mechanized transplanting.Rape blanket seedling transplanting is an innovative and efficient transplanting techniq...Considering both high efficiency and high seedling standing quality is a significant objective for crop mechanized transplanting.Rape blanket seedling transplanting is an innovative and efficient transplanting technique.However,falling off phenomenon has become a common problem facing rape blanket seedling transplanting fields that causes seedling standing quality decrease and restricts crop growth.In this study,the rape blanket seedling of Ningza-1838 varieties and 35 d of seedling age was taken as the research object.The critical falling off equations of seedling was established by dynamic analysis.Main factors affecting seedling falling off were obtained.The critical value of each factor was calculated which were as follows:the rotation speed of the planting mechanism was 24.6 rad/s,the substrate moisture content was 50.4%and the longitudinal picking seedling quantity was 14.7 mm.Taking the seedling falling off rate as evaluation index,the measured critical value of seedling falling off was determined by high speed photography experiment.Under the condition that substrate moisture content was 55%and the longitudinal seedling quantity was 15 mm,the seedling falling off rate sharply increased when the transplanting mechanism rotation speed was increased from 24 rad/s to 26 rad/s.Under the condition that the rotation speed was 22 rad/s and the longitudinal picking seedling quantity was 15 mm,the seedling falling off rate rapidly decreased when the moisture content was increased from 47%to 53%.When moisture content exceeded 53%,this exhibited no obvious change.Under the condition that the moisture content was 50%and the rotation speed was 22 rad/s,the seedling falling off rate swiftly raised when the longitudinal picking seedling quantity was increased from 14 mm to 17 mm.The experimental results showed that the seedling falling off rate increased significantly near the critical value.The experimental results showed that the seedling falling off rate changed significantly near the critical value.It proved that the model was correct.Response surface experiments with the Box-Behnken design were conducted to determine the optimal combination parameters,which were as follows:substrate moisture content was 56.24%,planting mechanism rotation speed was 22.04 rad/s,and longitudinal picking seedling quantity was 14.91 mm.At this time,the seedling falling off rate was 1.36%,which ensured that seedlings could be transplanted stably under the carrier of seedling needle.The verification test was conducted,and the working parameters were adjusted according to the optimization results in experiment.The results of verification test were highly consistent with the optimization solution.The present study may provide a theoretical method for improving seedling standing quality of rape blanket seedling,and laid a foundation for the popularization and development of rape carpet seedling transplanting.展开更多
基金funded by the National High-Tech R&D Program of China (2013AA103003)the Agricultural Research Special Funds for Public Welfare Projects,China (201303108)
文摘The aim of this study was to evaluate the growth of rape (Brassica napus L.) seedlings under different light intensities to select appropriate conditions for cultivation in an indoor system. Seedlings were grown under different light intensities of red and blue light provided by light-emitting diodes (LEDs) and their self-adjustment ability and changes in leaf microstructure were evaluated. Light was supplied by red LEDs with peak wavelengths of 630 (R1) and 660 nm (R2) and by blue LEDs (B) with a peak wavelength of 445 nm (the light intensity ratio of R1:R2:B was 3:3:2), at intensities of 400 (R1R2B400), 300 (R1R2B300), and 200 μmol m-2 s-1 (R1R2B200). Natural solar light served as the control (C). Plant height, stem diameter, root length, leaf area, and dry weight of rape seedlings gradually increased with increasing light intensity. The seedlings in the R1R2B400 treatment grew more vigorously, while those in the R1R2B200 treatment were weaker. The photosynthetic pigment contents did not differ significantly between the R1R2B400 treatment and C, but were significantly lower in the R1R2B300 and R1R2B200 treatments. The highest intercellular CO2concentration, stomatal conductance, and transpiration rate were in the R1R2B300 treatment. The highest photosynthetic rate was in the R1R2B400 treatment, and was related to more compact leaves, thicker and tidier palisade and spongy tissues, and well-developed chloroplasts. In contrast, the seedlings in the R1R2B200 treatment had disordered mesophyll cells, round chloroplasts, and fractured and fuzzy grana lamellae, all of which inhibited plant growth. In conclusion, the seedlings in the R1R2B400 treatment had well-developed leaves, which favored photosynthesis. Compared with the light intensities below 300 μmol m-2 s-1, the light intensity of 400 μmol m-2 s-1 provided by a cembination of red and blue LEDs was beneficial for cultivating strong and healthy rape seedlings in an artificial system.
文摘Effect of cerium (Ce^3+) on growth and photosynthesis in rape seedlings exposed to two levels of ultraviolet-B radiation (UV-B, 280 - 320 nm) was studied with hydroponics under laboratory conditions. The growth of rape seedlings exposed to two levels of UV-B irradiation (0.15 and 0.35 W· m^-2/T2) was both heavily restrained. The aboveground growth indices including stem (plant) height, leaf number, leaf area, leaf fresh/dry weight and stem fresh/dry weight were obviously decreased by 13.2% - 44.1% (T1) and 21 .4% - 49.3% (T2). Compared to CK, and except active absorption area of roots, the belowground indices main root length, root volume and fresh/dry weight by 14.1% -35.6% (T1) and 20.3% - 42.6% (T2), respectively. For Ce + UV-B treatments, the aboveground and belowground growth indices were decreased by 4.1% - 23.6%, 5.2% -23.3% (Ce+T1) and 10.8% -28.4%, 7.0% -27.8% (Ce +T2), lower than those of UV-B treatments mentioned above. These results show that Ce has protective effect on plant against injury of UV-B radiation. Furthermore, the protective effect of Ce on seedlings exposed to T1 level of UV-B radiation is superior to T2 level. Chlorophyll content, net photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency in UV-B treatments decrease dramatically, whereas intercellular CO2 concentration increases. Although these indices in Ce + UV-B treatments decrease compared with those of CK, the decrease in Ce + UV-B treatments are lower than those in UV-B treatment. This phenomenon indicates that the ecophysiological protective effect of Ce is based on improving photosynthesis in plants. The dynamic curves of photosynthesis indices show that the course of light-repair is shortened and the injury to rape seedlings by UV-B radiation stress is alleviated by Ce.
文摘Effects of cerium (Ce^3+ ) on membranous protective enzymes in rape seedlings exposed to two levels of enhanced uhraviolet-B radiation (UV-B, 280 - 320 nm) were studied by hydroponics in the laboratory. The results show that the chlorophyll content decreases and membrane permeability increases in the leaves under UV-B irradiation with an intensity of 0.15 and 0.35 W·m^-2. The activities of SOD, CAT and POD are first increased and then decreased in leaves exposed to a low level of UV-B radiation. POD activity in leaves exposed to a high level of UV-B radiation is enhanced constantly. The sensitivities of these enzymes to UV-B radiation are SOD 〉 CAT 〉 POD. The injury by UV-B radiation on the functions of protective enzymes is lightened, their ability to scavenge radicals is improved, and the membrane permeability is maintained by Ce. Furthermore, the protective effect of cerium is more obvious in plants exposed to low levels of UV-B radiation than to high levels of it. Accordingly, all results prove that the protective effect of Ce on plants under UV-B radiation is realized through the protective system of plants.
文摘Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were investigated by the hydroponic culture. The results of static experiment indicated that the tolerance of rape seedling to single stress(AR or UV-B) is stronger than that to dual stresses(AR + UV-B). Furthermore, the dual stresses had additive effect on catalase activity, and a synergistic effect on MDA content, net photosynthesis rate, water use efficiency as well as intercellular CO2 concentration. Meanwhile, it has an independent effect on chlorophyll content, stomatal conductance, and transpiration rate as well as membrane permeability. During 64 h restoration course, the dynamic change in the curves of physiological and biochemical indices were not identical, and none of them show a simple linear variation. According to the static and dynamic experiments, it was found that a responsive sequence of catalase activity, membrane permeability, MDA content and photosynthetic characteristics to the above-mentioned stresses was as follows: AR + UV-B 〉 UV-B 〉 AR.
基金supported by the National Special Fund for Agro-Scientific Research of Public Interests of China(201303030)the Anhui Provincial Natural Science Foundation,China(1408085MKL65)
文摘Seed treatments with the neonicotinoid insecticides imidacloprid and thiamethoxam were evaluated to determine whether the chemicals at effective concentrations for aphid control would influence the germination and early growth of oilseed rape,Brassica napus.Treatment with imidacloprid or thiamethoxam did not affect the cumulative germination rate,but significantly inhibited establishment potential by suppressing root system development in the cotyledon stage.However,these alterations in seedling development in the thiamethoxam-treated seeds appeared not to be detrimental as leaves developed;in contrast,for the seedlings with imidacloprid as seed treatment agent,a significantly decreased shoot/root ratio was still evident at the late two-leaf stage.After two leaves developed,chlorophyll content per leaf in the thiamethoxam treatment was significantly higher than that of the control,while chlorophyll content per leaf in the imidacloprid treatment remained close to that in the control.Most other parameters,i.e.,height,leaf area,weight of stem,leaf or root,and other growth indexes,between the treatments and the control showed no significant difference.Additionally,it was found that storage time of the treated seeds had a significant effect on cumulative germination rate.Treatment 30 d before planting significantly reduced germination relative to that of the control.All of the plants treated with neonicotinoids were shown to have significant anti-aphid characteristics that persisted until the end of the trial.
基金supported by the National Natural Science Foundation of China(51575284)the National Key Research and Development Program of China(2017YFD0700804)Funds for Modern Agricultural Industry Technology System Construction of China(CARS-13).
文摘Considering both high efficiency and high seedling standing quality is a significant objective for crop mechanized transplanting.Rape blanket seedling transplanting is an innovative and efficient transplanting technique.However,falling off phenomenon has become a common problem facing rape blanket seedling transplanting fields that causes seedling standing quality decrease and restricts crop growth.In this study,the rape blanket seedling of Ningza-1838 varieties and 35 d of seedling age was taken as the research object.The critical falling off equations of seedling was established by dynamic analysis.Main factors affecting seedling falling off were obtained.The critical value of each factor was calculated which were as follows:the rotation speed of the planting mechanism was 24.6 rad/s,the substrate moisture content was 50.4%and the longitudinal picking seedling quantity was 14.7 mm.Taking the seedling falling off rate as evaluation index,the measured critical value of seedling falling off was determined by high speed photography experiment.Under the condition that substrate moisture content was 55%and the longitudinal seedling quantity was 15 mm,the seedling falling off rate sharply increased when the transplanting mechanism rotation speed was increased from 24 rad/s to 26 rad/s.Under the condition that the rotation speed was 22 rad/s and the longitudinal picking seedling quantity was 15 mm,the seedling falling off rate rapidly decreased when the moisture content was increased from 47%to 53%.When moisture content exceeded 53%,this exhibited no obvious change.Under the condition that the moisture content was 50%and the rotation speed was 22 rad/s,the seedling falling off rate swiftly raised when the longitudinal picking seedling quantity was increased from 14 mm to 17 mm.The experimental results showed that the seedling falling off rate increased significantly near the critical value.The experimental results showed that the seedling falling off rate changed significantly near the critical value.It proved that the model was correct.Response surface experiments with the Box-Behnken design were conducted to determine the optimal combination parameters,which were as follows:substrate moisture content was 56.24%,planting mechanism rotation speed was 22.04 rad/s,and longitudinal picking seedling quantity was 14.91 mm.At this time,the seedling falling off rate was 1.36%,which ensured that seedlings could be transplanted stably under the carrier of seedling needle.The verification test was conducted,and the working parameters were adjusted according to the optimization results in experiment.The results of verification test were highly consistent with the optimization solution.The present study may provide a theoretical method for improving seedling standing quality of rape blanket seedling,and laid a foundation for the popularization and development of rape carpet seedling transplanting.