This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy...This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric an...This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.展开更多
An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature wa...An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature was over a range of 550–650℃ under 1.0 MPa pressure with different atmospheres.On the basis of the individual pyrolysis behavior of bituminous coal and biomass,the influences of the biomass blending ratio,temperature,pressure and atmosphere on the product distribution were investigated.The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor,especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w),600℃,and 0.3 MPa was applied.The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis.The tar yields were higher than the calculated values from individual pyrolysis of each fuel,and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel.The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis.展开更多
Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction...Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.展开更多
To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer a...To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC–MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.展开更多
To increase the low yield and selectivity of aromatic hydrocarbons during the biomass pyrolysis process,we torrefied the biomass and then co-pyrolyzing with plastics such as high-density polyethylene(HDPE),polystyrene...To increase the low yield and selectivity of aromatic hydrocarbons during the biomass pyrolysis process,we torrefied the biomass and then co-pyrolyzing with plastics such as high-density polyethylene(HDPE),polystyrene(PS),ethylene-vinyl acetate(EVA)and polypropylene(PP)and also single and dual catalyst layouts were investigated by Py-GC/MS.The results showed that non-catalytic fast pyrolysis(CFP)of raw bagasse(RBG)generated no aromatics.After torrefaction non-CFP of torrefied bagasse(TBG)generated low aromatic yield.Indicating that torrefaction would enhance the proportion of aromatics during the pyrolysis process.The CFP of TBG_(200℃)and TBG_(240℃)over ZSM-5 produced the total aromatic yield of 1.96 and 1.88 times higher,respectively,compared to non-CFP of TBG.Furthermore,the addition of plastic could increase H/Ceff ratio of the mixture,consequently,increase the yield of aromatic compounds.Among the various torrefied-bagasse/plastic mixtures,the CFP of TBG/EVA(7:3 ratio)mixture generated the highest the total aromatic yield of 7.7 times more than the CFP of TBG alone.The dual catalyst layout could enhance the yield of aromatics hydrocarbons.The dual-catalytic co-pyrolysis of TBG_(200℃)/plastic(1:1)ratio over USY(ultra-stable Y zeolite)/ZSM-5,improved the total aromatics yield by 4.33 times more than the catalytic pyrolysis of TBG_(200℃)alone over ZSM-5 catalyst.The above results showed that the yield and selectivities of light aromatic hydrocarbons can be improved via catalytic co-pyrolysis and dual catalytic co-pyrolysis of torrefied-biomass with plastics.展开更多
The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ...The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ene) in tube furnace. Meanwhile, the research focuses on the co-pyrolysis products under different mix- ing ratios as well as pyrolysis products at different testing temperatures and heating rates. The results show that higher final testing temperature and lower heating rate contribute to bond fission in lignite pyrolysis, resulting in less char product. In co-pyrolysis, lignite acts as hydrogen donor, and the yields of char and water rise with increasing amount of plastic in the mixture, while the yields of gas and tar decrease; and a little admixture of plastic will promote the production of gas and tar. Kinetic studies indi- cate that in temperature range of 530-600℃, activation energies of lignite are higher than those of lig- nite/plastic blends, and as plastic mass ratio increases from 0% to 10%, samples need less energy to be decomposed during co-pyrolysis.展开更多
Thermal decomposition of 21 kinds of binary mixtures between typical medical compositions was investigated under nitrogen conditions by dynamic thermogravimetric analysis(TGA) at 25–800 °C. The weighed sum metho...Thermal decomposition of 21 kinds of binary mixtures between typical medical compositions was investigated under nitrogen conditions by dynamic thermogravimetric analysis(TGA) at 25–800 °C. The weighed sum method(WSM) coupled with thermal analysis was applied to study the interaction between components. Then, co-pyrolysis kinetic model of the binary mixtures(tube for transfusion(TFT) and gauze) was established to verify the reliability of conclusions. The results show the follows. 1) Strong or weak interactions are shown between binary mixtures containing polyvinyl chloride(PVC), the main ingredient of TFT. The addition of other medical waste could enhance first stage decomposition of TFT. While, the secondary stage pyrolysis may be suppressed or enhanced or not affected by the addition. 2) There exists no interaction between catheter and other component, the DTG peak temperature representing Ca CO3 decomposition in catheter fraction is obviously lower than that of pure catheter; while,the shape of DTG peak keeps unchanged. 3) No evident reaction occurs between the other mix-samples, it is considered that their co-pyrolysis characteristics are linear superposition of mono-component pyrolysis characteristics.展开更多
The co-pyrolysis of coal and biomass has proven to be a promising route to produce liquid and gaseous fuels as well as specific value-added chemicals while contributing to mitigating CO_(2) emissions.The interactions ...The co-pyrolysis of coal and biomass has proven to be a promising route to produce liquid and gaseous fuels as well as specific value-added chemicals while contributing to mitigating CO_(2) emissions.The interactions between the co-processed feedstocks,however,need to be elucidated to support the development of such a thermochemical conversion process.In this context,the present work covers the kinetic analysis of the co-pyrolysis of a bituminous coal with poplar wood.In this research,biomass was blended with coal at two different mass ratios(10%(mass)and 20%(mass)).Thermogravimetric analyses were carried out with pure and blended samples at four heating rates(5,10,15 and 30℃·min^(-1)).A direct comparison of experimental and theoretical results(based on a simple additivity rule)failed to yield a clear-cut conclusion regarding the existence of synergistic effects.Kinetic analyses have therefore been achieved using two model-free methods(the Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose models)to estimate the rate constant parameters related to the pyrolysis process.A significant decrease of the activation energy has thus been observed when adding wood to coal(activation energies associated with the blend containing 20%(mass)of biomass being even lower than those estimated for pure wood at low conversion degrees).This trend was attributed to the possible presence of synergies whose related mechanisms are discussed.The rate constant parameters derived by means of the two tested models were finally used to simulate the evolution of the conversion degree of each sample as a function of the temperature,thus leading to a satisfying agreement between measured and simulated data.展开更多
The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis ...The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis reaction of natural gas and coal using density functional theory.The favorable reaction conditions are presented in the form of phase diagrams.The calculation results show that the extra amount of methane may benefit the production of acetylene in the co-pyrolysis reaction,and the C/H ratio of 1:1,temperature around 3000 K and pressure at 0.1 MPa are most favorable.The results would provide basic data for related industrial process for the production of acetylene.展开更多
Unlike plastic,biomass can also be converted and produce high quality of biofuel.Co-pyrolysis of coconut husk(CH)and laminated plastic packaging(LPP)were done in this study.Synergy between these two feedstock was calc...Unlike plastic,biomass can also be converted and produce high quality of biofuel.Co-pyrolysis of coconut husk(CH)and laminated plastic packaging(LPP)were done in this study.Synergy between these two feedstock was calculated by using thermogravimetric(TGA)and derivative thermogravimetry(DTG)analysis.Different activation energies of the reactions in the co-pyrolysis of CH and LPP were evaluated using the Coats-Redfern method.Results showed an activation energy ranging from 8 to 37 kJ/mol in the different percentage composition of the co-pyrolysis.Also,thermal degradation happens in two-stages in the copyrolysis of CH and LPP,in which CH degrades at the temperature range of 210℃ to 390℃ while LPP degrades in temperatures 400℃-600℃.Co-pyrolysis of CH and LPP can be an alternative for biofuel production and can also reduce the waste problems in the community.展开更多
The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pe...The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.展开更多
Background: Dementia is a condition with progressive cognitive dysfunction and manifestation of both behavioral and psychosocial symptoms. Non-pharmacological measures such as music therapy are gaining importance sinc...Background: Dementia is a condition with progressive cognitive dysfunction and manifestation of both behavioral and psychosocial symptoms. Non-pharmacological measures such as music therapy are gaining importance since efficacy and safety of people with dementia have been questionable for pharmacological measures. Patient’s response to music is persistent even in the later stage of dementia. Aim: This rapid review aims to identify, analyze, evaluate, and summarize the best available evidence on the effectiveness of music-based therapeutic interventions among people with dementia. Method: CINAHL Cochrane Library, internet websites of rapid review producers, and reference lists were searched to identify articles for inclusion. Two reviewers independently screened the literature search results. Effectiveness, music-based therapeutic intervention, dementia, Alzheimer’s disease, systematic review and systematic review with meta-analysis terms were used to abstract data from included studies. Main Findings: 11 SRs and SRs with meta-analysis were reviewed which revealed positive effect of music therapy on five major outcomes with 9 studies effect on behavioral outcome, 6 studies with positive effect on psychosocial outcome reducing anxiety, 6 with improved cognition, 1 study revealed with improved quality of life and 1 study revealed effect on physiological outcomes. Conclusion: Music therapy has positive effect on treatment of dementia but further studies with larger sample size and specified to single intervention should be conducted to provide generalisable and precise results on this topic.展开更多
The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attribute...The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attributed to its unique microstructure,which includes Long-Period Stacking Ordered(LPSO)phases or the distinctive microstructure derived from the LPSO phase,referred to as the Mille-Feuille structure(MFS).This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique,coupled with diverse heat treatments and extrusion processes.Microscopic analyses reveal variations in the presence of LPSO phases,Mille-Feuille structure,and grain size,leading to divergent mechanical and corrosion properties.The rapid solidification approach stands out,ensuring superior mechanical properties alongside a reasonable corrosion rate.展开更多
1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is...1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.展开更多
Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment ...Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.展开更多
Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and...Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China.展开更多
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e...Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.展开更多
Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are d...Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.展开更多
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.
基金Supported by Hydrocarbon High-efficiency Utilization Technology Research Center of Yanchang Petroleum(Group)Co.Ltd.,China(ycsy2013ky-A-30)
文摘An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature was over a range of 550–650℃ under 1.0 MPa pressure with different atmospheres.On the basis of the individual pyrolysis behavior of bituminous coal and biomass,the influences of the biomass blending ratio,temperature,pressure and atmosphere on the product distribution were investigated.The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor,especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w),600℃,and 0.3 MPa was applied.The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis.The tar yields were higher than the calculated values from individual pyrolysis of each fuel,and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel.The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis.
基金Supported by the National Natural Science Foundation of China(51503154,51776141)Major Projects of China Water Pollution Control and Treatment Science and Technology(2017ZX07202005)
文摘Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.
基金Supported by National High-tech Research and Development Program of China(2011AA05A2021)the National Natural Science Foundation of China(21536009)Science and Technology Plan Projects of Shaanxi Province(2017ZDCXL-GY-10-03).
文摘To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC–MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.
基金supported by the National Natural Science Foun-dation for Excellent Young Scholar of China(51822604)the Nature Science Foundation of Jiangsu Province for Distinguished Young Scholar(BK20180014).
文摘To increase the low yield and selectivity of aromatic hydrocarbons during the biomass pyrolysis process,we torrefied the biomass and then co-pyrolyzing with plastics such as high-density polyethylene(HDPE),polystyrene(PS),ethylene-vinyl acetate(EVA)and polypropylene(PP)and also single and dual catalyst layouts were investigated by Py-GC/MS.The results showed that non-catalytic fast pyrolysis(CFP)of raw bagasse(RBG)generated no aromatics.After torrefaction non-CFP of torrefied bagasse(TBG)generated low aromatic yield.Indicating that torrefaction would enhance the proportion of aromatics during the pyrolysis process.The CFP of TBG_(200℃)and TBG_(240℃)over ZSM-5 produced the total aromatic yield of 1.96 and 1.88 times higher,respectively,compared to non-CFP of TBG.Furthermore,the addition of plastic could increase H/Ceff ratio of the mixture,consequently,increase the yield of aromatic compounds.Among the various torrefied-bagasse/plastic mixtures,the CFP of TBG/EVA(7:3 ratio)mixture generated the highest the total aromatic yield of 7.7 times more than the CFP of TBG alone.The dual catalyst layout could enhance the yield of aromatics hydrocarbons.The dual-catalytic co-pyrolysis of TBG_(200℃)/plastic(1:1)ratio over USY(ultra-stable Y zeolite)/ZSM-5,improved the total aromatics yield by 4.33 times more than the catalytic pyrolysis of TBG_(200℃)alone over ZSM-5 catalyst.The above results showed that the yield and selectivities of light aromatic hydrocarbons can be improved via catalytic co-pyrolysis and dual catalytic co-pyrolysis of torrefied-biomass with plastics.
基金the financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Special Found of International S&T Cooperation Project of China (No.2010DFA72730)
文摘The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ene) in tube furnace. Meanwhile, the research focuses on the co-pyrolysis products under different mix- ing ratios as well as pyrolysis products at different testing temperatures and heating rates. The results show that higher final testing temperature and lower heating rate contribute to bond fission in lignite pyrolysis, resulting in less char product. In co-pyrolysis, lignite acts as hydrogen donor, and the yields of char and water rise with increasing amount of plastic in the mixture, while the yields of gas and tar decrease; and a little admixture of plastic will promote the production of gas and tar. Kinetic studies indi- cate that in temperature range of 530-600℃, activation energies of lignite are higher than those of lig- nite/plastic blends, and as plastic mass ratio increases from 0% to 10%, samples need less energy to be decomposed during co-pyrolysis.
基金Projects(51105269,51406133)supported by the National Natural Science Foundation of ChinaProject supported by the ScientificResearch Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject supported by the Ministry ofEducation Key Laboratory Program,China
文摘Thermal decomposition of 21 kinds of binary mixtures between typical medical compositions was investigated under nitrogen conditions by dynamic thermogravimetric analysis(TGA) at 25–800 °C. The weighed sum method(WSM) coupled with thermal analysis was applied to study the interaction between components. Then, co-pyrolysis kinetic model of the binary mixtures(tube for transfusion(TFT) and gauze) was established to verify the reliability of conclusions. The results show the follows. 1) Strong or weak interactions are shown between binary mixtures containing polyvinyl chloride(PVC), the main ingredient of TFT. The addition of other medical waste could enhance first stage decomposition of TFT. While, the secondary stage pyrolysis may be suppressed or enhanced or not affected by the addition. 2) There exists no interaction between catheter and other component, the DTG peak temperature representing Ca CO3 decomposition in catheter fraction is obviously lower than that of pure catheter; while,the shape of DTG peak keeps unchanged. 3) No evident reaction occurs between the other mix-samples, it is considered that their co-pyrolysis characteristics are linear superposition of mono-component pyrolysis characteristics.
基金the support of the French Ministry of Higher Education,Research and Innovation(Ministère de l’Enseignement supérieur,de la Recherche et de l’Innovation)。
文摘The co-pyrolysis of coal and biomass has proven to be a promising route to produce liquid and gaseous fuels as well as specific value-added chemicals while contributing to mitigating CO_(2) emissions.The interactions between the co-processed feedstocks,however,need to be elucidated to support the development of such a thermochemical conversion process.In this context,the present work covers the kinetic analysis of the co-pyrolysis of a bituminous coal with poplar wood.In this research,biomass was blended with coal at two different mass ratios(10%(mass)and 20%(mass)).Thermogravimetric analyses were carried out with pure and blended samples at four heating rates(5,10,15 and 30℃·min^(-1)).A direct comparison of experimental and theoretical results(based on a simple additivity rule)failed to yield a clear-cut conclusion regarding the existence of synergistic effects.Kinetic analyses have therefore been achieved using two model-free methods(the Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose models)to estimate the rate constant parameters related to the pyrolysis process.A significant decrease of the activation energy has thus been observed when adding wood to coal(activation energies associated with the blend containing 20%(mass)of biomass being even lower than those estimated for pure wood at low conversion degrees).This trend was attributed to the possible presence of synergies whose related mechanisms are discussed.The rate constant parameters derived by means of the two tested models were finally used to simulate the evolution of the conversion degree of each sample as a function of the temperature,thus leading to a satisfying agreement between measured and simulated data.
基金supported by the National Natural Science Foundation of China(21875096)the Natural Science Foundation of Jiangxi Province,China(20181BCD40004,No.20224BAB213015)。
文摘The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis reaction of natural gas and coal using density functional theory.The favorable reaction conditions are presented in the form of phase diagrams.The calculation results show that the extra amount of methane may benefit the production of acetylene in the co-pyrolysis reaction,and the C/H ratio of 1:1,temperature around 3000 K and pressure at 0.1 MPa are most favorable.The results would provide basic data for related industrial process for the production of acetylene.
基金The author would like to acknowledge the big help of the Department of Science and Technology in funding this research.
文摘Unlike plastic,biomass can also be converted and produce high quality of biofuel.Co-pyrolysis of coconut husk(CH)and laminated plastic packaging(LPP)were done in this study.Synergy between these two feedstock was calculated by using thermogravimetric(TGA)and derivative thermogravimetry(DTG)analysis.Different activation energies of the reactions in the co-pyrolysis of CH and LPP were evaluated using the Coats-Redfern method.Results showed an activation energy ranging from 8 to 37 kJ/mol in the different percentage composition of the co-pyrolysis.Also,thermal degradation happens in two-stages in the copyrolysis of CH and LPP,in which CH degrades at the temperature range of 210℃ to 390℃ while LPP degrades in temperatures 400℃-600℃.Co-pyrolysis of CH and LPP can be an alternative for biofuel production and can also reduce the waste problems in the community.
基金supported by grants from Shanghai Agriculture Applied Technology Development Program,China(Grant No.:2020-02-08-00-08-F01456)the Key Research and Development Program of Zhejiang Province,China(Grant No.:2020C02024-2).
文摘The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.
文摘Background: Dementia is a condition with progressive cognitive dysfunction and manifestation of both behavioral and psychosocial symptoms. Non-pharmacological measures such as music therapy are gaining importance since efficacy and safety of people with dementia have been questionable for pharmacological measures. Patient’s response to music is persistent even in the later stage of dementia. Aim: This rapid review aims to identify, analyze, evaluate, and summarize the best available evidence on the effectiveness of music-based therapeutic interventions among people with dementia. Method: CINAHL Cochrane Library, internet websites of rapid review producers, and reference lists were searched to identify articles for inclusion. Two reviewers independently screened the literature search results. Effectiveness, music-based therapeutic intervention, dementia, Alzheimer’s disease, systematic review and systematic review with meta-analysis terms were used to abstract data from included studies. Main Findings: 11 SRs and SRs with meta-analysis were reviewed which revealed positive effect of music therapy on five major outcomes with 9 studies effect on behavioral outcome, 6 studies with positive effect on psychosocial outcome reducing anxiety, 6 with improved cognition, 1 study revealed with improved quality of life and 1 study revealed effect on physiological outcomes. Conclusion: Music therapy has positive effect on treatment of dementia but further studies with larger sample size and specified to single intervention should be conducted to provide generalisable and precise results on this topic.
基金supported by Japan Society for the Promotion of Science(KAKENHI Grant-in-Aid for Scientific Research18H05475,18H05476 and JP20H00312)+2 种基金MRC International Collaborative Research Grant.The authors would like to thank the Czech Science Foundation(Project No.22-22248S)specific university research(A1_FCHT_2024_007)for financial supportthe assistance provided by the Ferroic Multifunctionalities project,supported by the Ministry of Education,Youth,and Sports of the Czech Republic.Project No.CZ.02.01.01/00/22_008/0004591,co-funded by the European Union.CzechNanoLab project LM2023051 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements/sample fabrication at LNSM Research Infrastructure.
文摘The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attributed to its unique microstructure,which includes Long-Period Stacking Ordered(LPSO)phases or the distinctive microstructure derived from the LPSO phase,referred to as the Mille-Feuille structure(MFS).This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique,coupled with diverse heat treatments and extrusion processes.Microscopic analyses reveal variations in the presence of LPSO phases,Mille-Feuille structure,and grain size,leading to divergent mechanical and corrosion properties.The rapid solidification approach stands out,ensuring superior mechanical properties alongside a reasonable corrosion rate.
文摘1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.
基金National Natural Science Foundation of China(Grant Nos:42150710531,42192551,61827901)supported this study.
文摘Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.
基金funded by the National Natural Science Foundation of China(42107476,31901241)the China Postdoctoral Science Foundation(2020M682600)+1 种基金the China Postdoctoral International Exchange Fellowship Program(PC2021099)the Natural Science Foundation of Hunan Province(2021JJ41075).
文摘Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China.
基金the National Natural Science Foundation of China(52304236)the Natural Science Foundation of Shandong Province(ZR2021QE076)for the financial support to this research extracted from the project.
文摘Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province of China(Project No.2023NSFSC0008)+1 种基金Uranium Geology Program of China Nuclear Geology(No.202205-6)the Sichuan Science and Technology Program(No.2021JDTD0018)。
文摘Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.