H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + )...Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + ) carrying hemagglutinin (HA) gene of AIV H9 subtype. After cell fusion, one positive hybridoma cell strain was screened out by hemagglutination inhibition assay ( HI ), and another positive hybddoma call strain was screened out by ELISA. After subcloning 3 times, the two cell strains could still secret antibodies against the HA of AIV H9 subtype. The mono- clonal antibodies did not react with Newcastle disease virus, AIV H5 subtype and duck adenovirus A. Their subtypes were IgG2b with kappa light chain. These two hybridoma cell strains may play an important role in rapid diagnosis and early-warning surveillance of AIV H9 subtype.展开更多
Avian influenza (AI) virology surveillance is the most important method to monitor AI virus (AIV) in poultry so as to effectively prevent and control AI outbreaks. Monoclonal antibodies (MAb)-based assays are highly s...Avian influenza (AI) virology surveillance is the most important method to monitor AI virus (AIV) in poultry so as to effectively prevent and control AI outbreaks. Monoclonal antibodies (MAb)-based assays are highly sensitive and specific for AIV detection, and much practical and economic for test-in-field or onsite. Many such assays have been developed and are still in developing since the H5N1 highly pathogenic AI (HPAI) outbreaks occurred in South East Asia in 2003. A MAb-based dot-enzyme-linked immunosorbent assay (ELISA) has been developed in our lab during late 1990s and early 2000s. Meanwhile, AIV H7 and H5 subtype specific-MAbs have been successfully developed in our laboratory to enhance the Dot-ELISA and other MAb-based assays for AIV detection. Production and purification of the H7 and H5 MAbs were made to provide essential reagents for Dot-ELISA and other immunoassays, and the current development of a novel Biosensor technique for rapid detection of AIV from clinical and field specimens.展开更多
Five monoclonal antibodies(Mabs) to nuclear protein of avain influenza virus(AIV) were developed by syncretizing SP 2/0 and the spleen cells from BALB of mice immuized with H9 subtype AIV. Specificity of these Mab...Five monoclonal antibodies(Mabs) to nuclear protein of avain influenza virus(AIV) were developed by syncretizing SP 2/0 and the spleen cells from BALB of mice immuized with H9 subtype AIV. Specificity of these Mabs were identified by immunofluorescent assay(IFA) and enzyme linked immunosorbent assay (ELISA). These five Mabs which were named as AIV-NP-2C3, AIV-NP-6A5, AIV-NP-3 H9, AIV-NP-7B4, AIV-NP-2H4 could react with all viruses of AIV-H9 strains in tests. The result of Western blotting showed that only the 60 ku protein antigen of AIV-H9 could be recognized by the Mabs but never recognized by New castle disease virus, REV and infectious bursa disease virus. The result of preliminary application showed that avian influenza viruses could be deetected bv Mabs in IFA and ELISA. All these Mabs will probably play important roles in preventing and monitoring avian influenza viruses.展开更多
Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of e...Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.展开更多
[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Ba...[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Baochen Hongwang farm were monitored. According to the disappearance law of maternal antibody, the optimal immune time of broiler avian influenza virus H5 subtype Re-8 strain was determined. [ Result] The maternal antibody level of 2-day-old broilers was relatively high, concentrated at 6 log2 -9 log2, and the antibody positive rate was 100%. The maternal antibody level of 8-day-old broilers concentrated at 4 log2 -6 log2, and the antibody positive rate was 100%. The maternal antibody level of 17-day-old broilers concentrated at 0 log2 -3 log2 , and the antibody positive rate was 0. The average maternal antibody level of 24 - 37 days old broilers was 〈 1 log2, and the antibody positive rate was 0. [ Conclusion ] Although the av- erage maternal antibody level of 8-day-old broilers was higher than 5 log2 , 20% of chickens was 4 log2, and maternal antibody could not protect the flock completely. Therefore, the best primary immunization day age of chicks against avian influenza virus was 8 - 10 days of age.展开更多
Avian influenza is the most contagious disease not only in poultry, but also in humans. Avian influenza in humans occurs mainly in Southeast Asia, but no human-to-human pandemic has occurred. Meanwhile, outbreaks of a...Avian influenza is the most contagious disease not only in poultry, but also in humans. Avian influenza in humans occurs mainly in Southeast Asia, but no human-to-human pandemic has occurred. Meanwhile, outbreaks of avian influenza in poultry occur on a global scale and cause a large economic loss. Migration antibodies passed from mother birds via eggs are said to be an important component of the immune system that protects birds from infection. Thus, the immunity status of mother birds can determine the ability of offspring to defend against infection. In this study, we investigated the presence of anti-avian influenza virus antibody in chickens hatched on a poultry farm in Indonesia and examined the involvement of migratory antibodies in protecting against virus infection by infectious experiments of highly pathogenic avian influenza in chickens. Blood was collected from randomly selected chicks, and antibodies against avian influenza virus were evaluated in all birds. Since these young birds had no history of vaccination, the antibodies were deemed to have been transferred from the mother birds. The enzyme-linked immunosorbent assay antibody titer in each bird varied. Infection of these birds with highly pathogenic avian influenza virus A/H5N1 intra-nasally resulted in a high mortality rate in chicks with low antibody titers but a low mortality rate in chicks with high antibody titers. These findings indicate that migratory antibody prevented highly pathogenic avian influenza A/H5N1 infection in chicks, suggesting that such a preventive effect could also be expected with outdoor natural infection.展开更多
To generate monoclonal anti-idiotypic antibodies(mAb2)against avian influenza virus subtype H9(H9 AⅣ), BALB/c mice were immunized with purified chicken anti-H9-AⅣ IgG and the splenocytes of immunized mice were fused...To generate monoclonal anti-idiotypic antibodies(mAb2)against avian influenza virus subtype H9(H9 AⅣ), BALB/c mice were immunized with purified chicken anti-H9-AⅣ IgG and the splenocytes of immunized mice were fused with myeloma cells NS-1.Hybridoma cells were screened by indirect enzyme-linked immunosorbent assays with both chicken and rabbit anti-H9-AⅣ IgG as coating antigens.One hybridoma cell clone secreting monoclonal antibody against idiotypes shared by both chicken and rabbit anti-H9-AⅣ IgG was established.Experiments demonstrated the mAb2 was able to inhibit the binding of hemagglutinin to anti-H9-AⅣ IgG and to induce chickens to generate hemagglutination inhibition antibodies,indicating this anti-species-sharing-idiotypic antibody bore the internal image of hemagglutinin on avian influenza virus.Cellular & Molecular Immunology.2005;2(2): 155-157.展开更多
In order to detect the multiple avian influenza viruses(AIVs)rapidly,specifically and sensitively,a LabVIEW and microelectrode array-based impedance biosensor was developed and demonstrated.A laptop with LabVIEW softw...In order to detect the multiple avian influenza viruses(AIVs)rapidly,specifically and sensitively,a LabVIEW and microelectrode array-based impedance biosensor was developed and demonstrated.A laptop with LabVIEW software was used to generate excitation signals at different frequencies with an audio card and measure the impedance of target viruses through a data acquisition card.The audio card of the laptop was used as a function generator,while a data acquisition card was used for data communication.A virtual instrument was programmed with LabVIEW to provide a platform for impedance measurement,data processing,and control.Six interdigitated microelectrodes were placed at the bottom of six wells on a microplate to form six sensors for different AIVs and controls.Then,AIV specific ligands were immobilized on the microelectrode surface to capture target viruses.To enhance the sensitivity,AIV specific aptamers conjugated gold nanoparticles and thiocyanuric acid were employed to form a network structure and used as an amplifier.Results of the measured impedance were compared with a commercial IM6 impedance analyzer,and the error was less than 5%.The developed biosensor was portable with the sensitivity and specificity for applications to on-site or in-field rapid screening of avian influenza viruses.展开更多
A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely and appropriate countermeasures against viral infections.In this study,conductive polyme...A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely and appropriate countermeasures against viral infections.In this study,conductive polymer-based nanoparticles have been developed as a tool for rapid diagnosis of influenza A(H1N1)virus.The distinctive property of a conductive polymer that transduces stimulus to respond,enabled immediate optical signal processing for the specific recognition of H1N1 virus.Conductive poly(aniline-co-pyrrole)-encapsulated polymeric vesicles,functionalized with peptides,were fabricated for the specific recognition of H1N1 virus.The low solubility of conductive polymers was successfully improved by employing vesicles consisting of amphiphilic copolymers,facilitating the viral titer-dependent production of the optical response.The optical response of the detection system to the binding event with H1N1,a mechanical stimulation,was extensively analyzed and provided concordant information on viral titers of H1N1 virus in 15 min.The specificity toward the H1N1 virus was experimentally demonstrated via a negative optical response against the control group,H3N2.Therefore,the designed system that transduces the optical response to the target-specific binding can be a rapid tool for the diagnosis of H1N1.展开更多
Dear Editor,Influenza A viruses(IAVs)are single-stranded,negative sense RNA viruses.IAV subtype is determined on the basis of the viral surface glycoproteins,hemagglutinin(HA),and neuraminidase(NA).To date,18 HA and 1...Dear Editor,Influenza A viruses(IAVs)are single-stranded,negative sense RNA viruses.IAV subtype is determined on the basis of the viral surface glycoproteins,hemagglutinin(HA),and neuraminidase(NA).To date,18 HA and 11NA subtypes have been reported(Tong et al.,2012).展开更多
To determine if the maternal antibody from breeders vaccinated with cell culture-adapted reticuloendotheliosis virus (REV) could protect chicks from early REV infection, one-day-old chicks with or without anti-REV m...To determine if the maternal antibody from breeders vaccinated with cell culture-adapted reticuloendotheliosis virus (REV) could protect chicks from early REV infection, one-day-old chicks with or without anti-REV maternal antibodies were inoculated with REV, and then their growth rates and antibody titers to Newcastle disease virus (NDV) and avian influenza virus (AIV), after vaccination with inactivated vaccines, were compared. This study indicated that REV infection could cause growth retardation and severely inhibit immune reactions to inactivated vaccines against NDV and Avian influenza virus (AIV, H9 and H5) in one-day-old broilers without maternal antibodies specific to REV. Maternal antibody from breeders vaccinated with an attenuated REV vaccine effectively protected REV-challenged birds from growth retardation and immunosuppression on antibody reactions to NDV and AIV vaccines. Four weeks after vaccination, the HI titers to NDV, AIV-H9, and AIV-H5 in maternal antibody positive and negative groups were 3.36 +- 2.04 versus 1.58± 1.69 (P〈0.01), 6.27±3.87 versus 0.71 ± 1.60 (P〈0.01), and 6.72±3.92 versus 0.54± 1.44 (P〈0.01). Maternal antibodies from breeders vaccinated with REV vaccine could successfully protect chicks from REV infection and effectively prevent REV-induced growth retardation and immunosuppression in antibody responses to NDV and AIV.展开更多
The H9N2 subtype avian influenza virus(AIV)inactivated vaccine has been used extensively in poultry farms,but it often fails to stimulate a sufficiently high immune response in poultry in the field,although it works w...The H9N2 subtype avian influenza virus(AIV)inactivated vaccine has been used extensively in poultry farms,but it often fails to stimulate a sufficiently high immune response in poultry in the field,although it works well in laboratory experiments;hence,the virus still causes economic damage every year and poses a potential threat to public health.Based on surveillance data collected in the field,we found that broilers with high levels of maternal-derived antibodies(MDAs)against H9N2 virus did not produce high levels of antibodies after vaccination with a commercial H9N2 inactivated vaccine.In contrast,specific pathogen-free(SPF)chickens without MDAs responded efficiently to that vaccination.When MDAs were mimicked by administering passively transferred antibodies(PTAs)into SPF chickens in the laboratory,similar results were observed:H9N2-specific PTAs inhibited humoral immunity against the H9N2 inactivated vaccine,suggesting that H9N2-specific MDAs might hinder the generation of antibodies when H9N2 inactivated vaccine was used.After challenge with homologous H9N2 virus,the virus was detected in oropharyngeal swabs of the vaccinated and unvaccinated chickens with PTAs but not in the vaccinated chickens without PTAs,indicating that H9N2-specific MDAs were indeed one of the reasons for H9N2 inactivated vaccine failure in the field.When different titers of PTAs were used to mimic MDAs in SPF chickens,high(HI=12 log2)and medium(HI=log 9 log2)titers of PTAs reduced the generation of H9N2-specific antibodies after the first vaccination,but a booster dose would induce a high and faster humoral immune response even of PTA interference.This study strongly suggested that high or medium titers of MDAs might explain H9N2 inactivated vaccine failure in the field.展开更多
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
基金funded by the National Key Technology R&D Program(2006BAK20A29)the Shenzhen Entry-Exit Inspection and Quarantine Project(sz2008102)
文摘Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + ) carrying hemagglutinin (HA) gene of AIV H9 subtype. After cell fusion, one positive hybridoma cell strain was screened out by hemagglutination inhibition assay ( HI ), and another positive hybddoma call strain was screened out by ELISA. After subcloning 3 times, the two cell strains could still secret antibodies against the HA of AIV H9 subtype. The mono- clonal antibodies did not react with Newcastle disease virus, AIV H5 subtype and duck adenovirus A. Their subtypes were IgG2b with kappa light chain. These two hybridoma cell strains may play an important role in rapid diagnosis and early-warning surveillance of AIV H9 subtype.
文摘Avian influenza (AI) virology surveillance is the most important method to monitor AI virus (AIV) in poultry so as to effectively prevent and control AI outbreaks. Monoclonal antibodies (MAb)-based assays are highly sensitive and specific for AIV detection, and much practical and economic for test-in-field or onsite. Many such assays have been developed and are still in developing since the H5N1 highly pathogenic AI (HPAI) outbreaks occurred in South East Asia in 2003. A MAb-based dot-enzyme-linked immunosorbent assay (ELISA) has been developed in our lab during late 1990s and early 2000s. Meanwhile, AIV H7 and H5 subtype specific-MAbs have been successfully developed in our laboratory to enhance the Dot-ELISA and other MAb-based assays for AIV detection. Production and purification of the H7 and H5 MAbs were made to provide essential reagents for Dot-ELISA and other immunoassays, and the current development of a novel Biosensor technique for rapid detection of AIV from clinical and field specimens.
基金Supported by the National Key Technologies Research and Develop-ment Program of China during the 10th Five-Year Plan Period(2004BA519A05)Technologies Research and Development Program of China during the 10th Five-Year Plan Period in Jiangsu Province(BE2002346).~~
文摘Five monoclonal antibodies(Mabs) to nuclear protein of avain influenza virus(AIV) were developed by syncretizing SP 2/0 and the spleen cells from BALB of mice immuized with H9 subtype AIV. Specificity of these Mabs were identified by immunofluorescent assay(IFA) and enzyme linked immunosorbent assay (ELISA). These five Mabs which were named as AIV-NP-2C3, AIV-NP-6A5, AIV-NP-3 H9, AIV-NP-7B4, AIV-NP-2H4 could react with all viruses of AIV-H9 strains in tests. The result of Western blotting showed that only the 60 ku protein antigen of AIV-H9 could be recognized by the Mabs but never recognized by New castle disease virus, REV and infectious bursa disease virus. The result of preliminary application showed that avian influenza viruses could be deetected bv Mabs in IFA and ELISA. All these Mabs will probably play important roles in preventing and monitoring avian influenza viruses.
基金supported by the General Program of the National Natural Science Foundation of China[No.31570162]the National Key Research Program[No.2016YFC1200200].
文摘Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.
文摘[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Baochen Hongwang farm were monitored. According to the disappearance law of maternal antibody, the optimal immune time of broiler avian influenza virus H5 subtype Re-8 strain was determined. [ Result] The maternal antibody level of 2-day-old broilers was relatively high, concentrated at 6 log2 -9 log2, and the antibody positive rate was 100%. The maternal antibody level of 8-day-old broilers concentrated at 4 log2 -6 log2, and the antibody positive rate was 100%. The maternal antibody level of 17-day-old broilers concentrated at 0 log2 -3 log2 , and the antibody positive rate was 0. The average maternal antibody level of 24 - 37 days old broilers was 〈 1 log2, and the antibody positive rate was 0. [ Conclusion ] Although the av- erage maternal antibody level of 8-day-old broilers was higher than 5 log2 , 20% of chickens was 4 log2, and maternal antibody could not protect the flock completely. Therefore, the best primary immunization day age of chicks against avian influenza virus was 8 - 10 days of age.
文摘Avian influenza is the most contagious disease not only in poultry, but also in humans. Avian influenza in humans occurs mainly in Southeast Asia, but no human-to-human pandemic has occurred. Meanwhile, outbreaks of avian influenza in poultry occur on a global scale and cause a large economic loss. Migration antibodies passed from mother birds via eggs are said to be an important component of the immune system that protects birds from infection. Thus, the immunity status of mother birds can determine the ability of offspring to defend against infection. In this study, we investigated the presence of anti-avian influenza virus antibody in chickens hatched on a poultry farm in Indonesia and examined the involvement of migratory antibodies in protecting against virus infection by infectious experiments of highly pathogenic avian influenza in chickens. Blood was collected from randomly selected chicks, and antibodies against avian influenza virus were evaluated in all birds. Since these young birds had no history of vaccination, the antibodies were deemed to have been transferred from the mother birds. The enzyme-linked immunosorbent assay antibody titer in each bird varied. Infection of these birds with highly pathogenic avian influenza virus A/H5N1 intra-nasally resulted in a high mortality rate in chicks with low antibody titers but a low mortality rate in chicks with high antibody titers. These findings indicate that migratory antibody prevented highly pathogenic avian influenza A/H5N1 infection in chicks, suggesting that such a preventive effect could also be expected with outdoor natural infection.
文摘To generate monoclonal anti-idiotypic antibodies(mAb2)against avian influenza virus subtype H9(H9 AⅣ), BALB/c mice were immunized with purified chicken anti-H9-AⅣ IgG and the splenocytes of immunized mice were fused with myeloma cells NS-1.Hybridoma cells were screened by indirect enzyme-linked immunosorbent assays with both chicken and rabbit anti-H9-AⅣ IgG as coating antigens.One hybridoma cell clone secreting monoclonal antibody against idiotypes shared by both chicken and rabbit anti-H9-AⅣ IgG was established.Experiments demonstrated the mAb2 was able to inhibit the binding of hemagglutinin to anti-H9-AⅣ IgG and to induce chickens to generate hemagglutination inhibition antibodies,indicating this anti-species-sharing-idiotypic antibody bore the internal image of hemagglutinin on avian influenza virus.Cellular & Molecular Immunology.2005;2(2): 155-157.
文摘In order to detect the multiple avian influenza viruses(AIVs)rapidly,specifically and sensitively,a LabVIEW and microelectrode array-based impedance biosensor was developed and demonstrated.A laptop with LabVIEW software was used to generate excitation signals at different frequencies with an audio card and measure the impedance of target viruses through a data acquisition card.The audio card of the laptop was used as a function generator,while a data acquisition card was used for data communication.A virtual instrument was programmed with LabVIEW to provide a platform for impedance measurement,data processing,and control.Six interdigitated microelectrodes were placed at the bottom of six wells on a microplate to form six sensors for different AIVs and controls.Then,AIV specific ligands were immobilized on the microelectrode surface to capture target viruses.To enhance the sensitivity,AIV specific aptamers conjugated gold nanoparticles and thiocyanuric acid were employed to form a network structure and used as an amplifier.Results of the measured impedance were compared with a commercial IM6 impedance analyzer,and the error was less than 5%.The developed biosensor was portable with the sensitivity and specificity for applications to on-site or in-field rapid screening of avian influenza viruses.
基金H.-O.Kim acknowledges support from the National Research Foundation of Korea grant funded by the Korean government(No.NRF-2019R1I1A1A01057005)Evaluation for Technology in Food,Agriculture and Forestry(IPET)through the Animal Disease Management Technology Development Program funded by Ministry of Agriculture,Food and Rural Affairs(MAFRA)(No.320056-2)+6 种基金D.Song acknowledges support from Korea Mouse Phenotyping Project(No.NRF-2019M3A9D5A01102797)Development of African Swine Fever Virus Vaccine and Assessment of Rapid Test Kit(No.NRF-2019K1A3A1A61091813)of the Ministry of Science and ICT through the National Research FoundationS.Haam acknowledges support from Technology Development Project for Biological Hazards Management in Indoor Air Program of Korea Environment Industry&Technology Institute(KEITI)funded by Korea Ministry of Environment(MOE)(No.RE202101004)Nano Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(No.2017M3A7B4041798)This research was also supported by the Bio&Medical Technology Development Program(No.NRF-2018M3A9E2022819)the Bio&Medical Technology Development Program(No.NRF-2018M3A9H4056340)the National Research Foundation(NRF)funded by the Ministry of Science&ICT.
文摘A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely and appropriate countermeasures against viral infections.In this study,conductive polymer-based nanoparticles have been developed as a tool for rapid diagnosis of influenza A(H1N1)virus.The distinctive property of a conductive polymer that transduces stimulus to respond,enabled immediate optical signal processing for the specific recognition of H1N1 virus.Conductive poly(aniline-co-pyrrole)-encapsulated polymeric vesicles,functionalized with peptides,were fabricated for the specific recognition of H1N1 virus.The low solubility of conductive polymers was successfully improved by employing vesicles consisting of amphiphilic copolymers,facilitating the viral titer-dependent production of the optical response.The optical response of the detection system to the binding event with H1N1,a mechanical stimulation,was extensively analyzed and provided concordant information on viral titers of H1N1 virus in 15 min.The specificity toward the H1N1 virus was experimentally demonstrated via a negative optical response against the control group,H3N2.Therefore,the designed system that transduces the optical response to the target-specific binding can be a rapid tool for the diagnosis of H1N1.
基金partially supported by the National Institutes of Health(grant no.P20GM103646)the United States Department of Agriculture Animal and Plant Health Inspection Service(agreement 14-7428-1041-CA)
文摘Dear Editor,Influenza A viruses(IAVs)are single-stranded,negative sense RNA viruses.IAV subtype is determined on the basis of the viral surface glycoproteins,hemagglutinin(HA),and neuraminidase(NA).To date,18 HA and 11NA subtypes have been reported(Tong et al.,2012).
基金This study was supported by the grant from the National Natural Science Foundation of China (30030450).
文摘To determine if the maternal antibody from breeders vaccinated with cell culture-adapted reticuloendotheliosis virus (REV) could protect chicks from early REV infection, one-day-old chicks with or without anti-REV maternal antibodies were inoculated with REV, and then their growth rates and antibody titers to Newcastle disease virus (NDV) and avian influenza virus (AIV), after vaccination with inactivated vaccines, were compared. This study indicated that REV infection could cause growth retardation and severely inhibit immune reactions to inactivated vaccines against NDV and Avian influenza virus (AIV, H9 and H5) in one-day-old broilers without maternal antibodies specific to REV. Maternal antibody from breeders vaccinated with an attenuated REV vaccine effectively protected REV-challenged birds from growth retardation and immunosuppression on antibody reactions to NDV and AIV vaccines. Four weeks after vaccination, the HI titers to NDV, AIV-H9, and AIV-H5 in maternal antibody positive and negative groups were 3.36 +- 2.04 versus 1.58± 1.69 (P〈0.01), 6.27±3.87 versus 0.71 ± 1.60 (P〈0.01), and 6.72±3.92 versus 0.54± 1.44 (P〈0.01). Maternal antibodies from breeders vaccinated with REV vaccine could successfully protect chicks from REV infection and effectively prevent REV-induced growth retardation and immunosuppression in antibody responses to NDV and AIV.
基金This study was supported by grants from the National Key Research and Development Plan(Nos.2016YFD0500204 and 2017YFD0500800)National Natural Science Foundation of China(Nos.31772753,31572543,31700136 and 31702237)+1 种基金Shanghai Municipal Natural Science Foundation(No.17ZR1437400)the Project of the Shanghai Science and Technology Commission(No.17391901700).
文摘The H9N2 subtype avian influenza virus(AIV)inactivated vaccine has been used extensively in poultry farms,but it often fails to stimulate a sufficiently high immune response in poultry in the field,although it works well in laboratory experiments;hence,the virus still causes economic damage every year and poses a potential threat to public health.Based on surveillance data collected in the field,we found that broilers with high levels of maternal-derived antibodies(MDAs)against H9N2 virus did not produce high levels of antibodies after vaccination with a commercial H9N2 inactivated vaccine.In contrast,specific pathogen-free(SPF)chickens without MDAs responded efficiently to that vaccination.When MDAs were mimicked by administering passively transferred antibodies(PTAs)into SPF chickens in the laboratory,similar results were observed:H9N2-specific PTAs inhibited humoral immunity against the H9N2 inactivated vaccine,suggesting that H9N2-specific MDAs might hinder the generation of antibodies when H9N2 inactivated vaccine was used.After challenge with homologous H9N2 virus,the virus was detected in oropharyngeal swabs of the vaccinated and unvaccinated chickens with PTAs but not in the vaccinated chickens without PTAs,indicating that H9N2-specific MDAs were indeed one of the reasons for H9N2 inactivated vaccine failure in the field.When different titers of PTAs were used to mimic MDAs in SPF chickens,high(HI=12 log2)and medium(HI=log 9 log2)titers of PTAs reduced the generation of H9N2-specific antibodies after the first vaccination,but a booster dose would induce a high and faster humoral immune response even of PTA interference.This study strongly suggested that high or medium titers of MDAs might explain H9N2 inactivated vaccine failure in the field.